answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
djyliett [7]
2 years ago
7

The difference in heights of the liquid in the two sides of the manometer is 43.4 cm when the atmospheric pressure is 755 mm hg.

given that the density of mercury is 13.6 g/ml, the pressure of the enclosed gas is ________ atm.
Physics
1 answer:
Schach [20]2 years ago
4 0

The atmospheric P is greater than the P in the flask, since the Hg level is lacking down lower on the side open to the atmosphere. 

43.4 cm x (10 mm / 1 cm) = 435 mm 

the density of Hg is 13.6 / 0.791 = 17.2 times better than the liquid in the manometer. This means that 1 mmHg = 17.2 mm of manometer liquid. 

435 mm manometer liquid x (1 mm Hg / 17.2 mm manometer liquid) = 25.3 mm Hg 

The pressure in the flask is 755 - 25.3 = 729.7 mmHg. 

729.7 mmHg x (1 atm / 760 mmHg ) = 0.960 atm.

You might be interested in
Inna Hurry is traveling at 6.8 m/s, when she realizes she is late for an appointment. She accelerates at 4.5 m/s^2 for 3.2 s. Wh
Alborosie

Answer:

1) v = 21.2 m/s

2) S = 63.33 m

3) s = 61.257 m

4) Deceleration, a = -4.32 m/s²

Explanation:

1) Given,

The initial velocity of Inna, u = 6.8 m/s

The acceleration of Inna, a = 4.5 m/s²

The time of travel, t = 3.2 s

Using the first equation of motion, the final velocity is

                v = u + at

                   = 6.8 + 4.5 x 3.2

                   = 21.2 m/s

The final velocity of Inna is, v = 21.2 m/s

2) Given,

The initial velocity of Lisa, u = 12 m/s

The final velocity of Lisa, v = 26 m/s

The acceleration of Lisa, a = 4.2 m/s²

Using the III equations of motion, the displacement is

                          v² = u² +2aS

                         S = (v² - u²) / 2a

                            = (26² -12²) / 2 x 4.2

                            = 63.33 m

The distance Lisa traveled, S = 63.33 m

3) Given,

The initial velocity of Ed, u = 38.2 m/s

The deceleration of Ed, d = - 8.6 m/s²

The time of travel, t = 2.1 s

Using the II equations of motion, the displacement is

                        s = ut + 1/2 at²

                           =38.2 x 2.1 + 0.5 x(-8.6) x 2.1²

                           = 61.257 m

Therefore, the distance traveled by Ed, s = 61.257 m

4) Given,

The initial velocity of the car, u = 24.2 m/s

The final velocity of the car, v = 11.9 m/s

The time taken by the car is, t = 2.85 s

Using the first equations of motion,

                         v = u + at

∴                        a = (v - u) / t

                            = (11.9 - 24.2) / 2.85

                            = -4.32 m/s²

Hence, the deceleration of the car, a = = -4.32 m/s²

5 0
2 years ago
Read 2 more answers
two students are on a balcony 19.6 m above the street. one student throws a ball vertically downward at 14.7 m:ds. at the same i
NARA [144]

A. The difference in the two ball's time in the air is 3 seconds

B. The velocity of each ball as it strikes the ground is 24.5 m/s

C. The balls 0.500 s after they are thrown are 14.7 m apart

<h3>Further explanation</h3>

Acceleration is rate of change of velocity.

\large {\boxed {a = \frac{v - u}{t} } }

\large {\boxed {d = \frac{v + u}{2}~t } }

<em>a = acceleration ( m/s² )</em>

<em>v = final velocity ( m/s )</em>

<em>u = initial velocity ( m/s )</em>

<em>t = time taken ( s )</em>

<em>d = distance ( m )</em>

Let us now tackle the problem!

<u>Given:</u>

Initial Height = H = 19.6 m

Initial Velocity = u = 14.7 m/s

<u>Unknown:</u>

A. Δt = ?

B. v = ?

C. Δh = ?

<u>Solution:</u>

<h2>Question A:</h2><h3>First Ball</h3>

h = H - ut - \frac{1}{2}gt^2

0 = 19.6 - 14.7t - \frac{1}{2}(9.8)t^2

0 = 19.6 - 14.7t - 4.9t^2

4.9t^2 + 14.7t - 19.6 = 0

t^2 + 3t - 4 = 0

(t + 4)(t - 1) = 0

(t - 1) = 0

\boxed {t = 1 ~ second}

<h3>Second Ball</h3>

h = H + ut - \frac{1}{2}gt^2

0 = 19.6 + 14.7t - \frac{1}{2}(9.8)t^2

0 = 19.6 + 14.7t - 4.9t^2

4.9t^2 - 14.7t - 19.6 = 0

t^2 - 3t - 4 = 0

(t - 4)(t + 1) = 0

(t - 4) = 0

\boxed {t = 4 ~ seconds}

The difference in the two ball's time in the air is:

\Delta t = 4 ~ seconds - 1 ~ second

\large {\boxed {\Delta t = 3 ~ seconds} }

<h2>Question B:</h2><h3>First Ball</h3>

v^2 = u^2 - 2gH

v^2 = (-14.7)^2 + 2(-9.8)(-19.6)

v^2 = 600.25

v = \sqrt {600.25}

\boxed {v = 24.5 ~ m/s}

<h3>Second Ball</h3>

v^2 = u^2 - 2gH

v^2 = (14.7)^2 + 2(-9.8)(-19.6)

v^2 = 600.25

v = \sqrt {600.25}

\boxed {v = 24.5 ~ m/s}

The velocity of each ball as it strikes the ground is 24.5 m/s

<h2>Question C:</h2><h3>First Ball</h3>

h = H - ut - \frac{1}{2}gt^2

h = 19.6 - 14.7(0.5) - \frac{1}{2}(9.8)(0.5)^2

\boxed {h = 11.025 ~ m}

<h3>Second Ball</h3>

h = H + ut - \frac{1}{2}gt^2

h = 19.6 + 14.7(0.5) - \frac{1}{2}(9.8)(0.5)^2

\boxed {h = 25.725 ~ m}

The difference in the two ball's height after 0.500 s is:

\Delta h = 25.725 ~ m - 11.025 ~ m

\large {\boxed {\Delta h = 14.7 ~ m} }

<h3>Learn more</h3>
  • Velocity of Runner : brainly.com/question/3813437
  • Kinetic Energy : brainly.com/question/692781
  • Acceleration : brainly.com/question/2283922
  • The Speed of Car : brainly.com/question/568302

<h3>Answer details</h3>

Grade: High School

Subject: Physics

Chapter: Kinematics

Keywords: Velocity , Driver , Car , Deceleration , Acceleration , Obstacle

6 0
2 years ago
The air surrounding an airplane in flight exerts a drag force that acts opposite to the airplane's motion. When an Airbus A380 i
Rainbow [258]

Answer:

4.32\cdot 10^5 hp, 3.22\cdot 10^8 W

Explanation:

The jet is flying at constant velocity: this means that its acceleration is zero, so the net force acting on the jet is also zero.

Therefore, we can write:

4F_T - F_d = 0

where

F_T = 322,000 N is the thrust force generated by each engine of the jet

F_d is the drag force

Solving for Fd,

F_d = 4 F_T = 4(322,000)=1.288\cdot 10^6 N

The velocity of the jet is

v=250 m/s

So, the rate at which the drag force does work (which is the power) is

P=F_d v

and substituting

F_d = 1.288\cdot 10^6 N\\v = 250 m/s

we find

P=(1.288\cdot 10^6)(250)=3.22\cdot 10^8 W

Converting into horsepower,

P=\frac{3.22\cdot 10^8}{746}=4.32\cdot 10^5 hp

4 0
2 years ago
This problem explores the behavior of charge on conductors. We take as an example a long conducting rod suspended by insulating
Olegator [25]

Answer:

rod end A is strongly attracted towards the balls

rod end B is weakly repelled by the ball as it is at a greater distance

Explanation:

When the ball with a negative charge approaches the A end of the neutral bar, the charge of the same sign will repel and as they move they move to the left end, leaving the rod with a positive charge at the A end and a negative charge of equal value at end B.

Therefore rod end A is strongly attracted towards the balls and

rod end B is weakly repelled by the ball as it is at a greater distance

3 0
2 years ago
There are devices to put in a light socket that control the current through a lightbulb, thereby increasing its lifetime. Which
Dmitrij [34]

Answer: B

Explanation:

Limiting the maximum current through the bulb. This will help in preserving or improving the bulb's lifetime and also this won't have an effect on the brightness of the bulb as brightness is affected by the average value. Although brightness is a factor of current, reducing the maximum current won't have any bearing on the average current the bulb is getting.

4 0
2 years ago
Other questions:
  • When a car accelerates from a standing start, the crash test dummy appears to be pressed backward into the seat cushion. Which o
    12·1 answer
  • The second law of thermodynamics imposes what limit on the efficiency of a heat engine? The second law of thermodynamics imposes
    5·1 answer
  • An experiment is conducted in which red light is diffracted through a single slit. Listed below are alterations made, one at a t
    6·1 answer
  • A weatherman carried an aneroid barometer from the ground floor to his office atop the Sears Tower in Chicago. On the level grou
    10·1 answer
  • the steel bed of a suspension bridge is 200m long at 20 C. If the extremes of temperature to which it might be exposed are -30 C
    9·1 answer
  • When a switch is closed to complete a DC series RL circuit which has a large time constant, Group of answer choices the electric
    6·1 answer
  • If you pull a resistant puppy with its leash in a horizontal direction, it takes 80 N to get it going. You can then keep it movi
    9·1 answer
  • Before you start taking measurements though, we’ll first make sure you understand the underlying concepts involved. By what meth
    9·1 answer
  • Gretchen runs the first 4.0 km of a race at 5.0 m/s. Then a stiff wind comes up, so she runs the last 1.0 km at only 4.0 m/s.
    9·1 answer
  • The average standard rectangular building brick has a mass of 3.10 kg and dimensions of 225 m x 112 m x 75 m. The gravitational
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!