Let h = the distance from the edge of the wall to the water surface (m).
Use g = 9.8 m/s² and neglect air resistance.
The initial vertical velocity of the pebble is zero.
Because the pebble hits the surface of the water after 1.5 s, therefore
h = (1/2)*(9.8 m/s²)*(1.5 s)² = 11.025 m
Answer: 11.025 m
We are given a mercury atom in the ground state which absorbs 20 eV of energy. It is then ionized by losing an electron. We need to calculate the kinetic energy that the electron has after ionization.
The initial energy is 20 eV = 20 J/C
The electron charge is = 1.60217662 × 10-19<span> coulombs
To determine the kinetic energy, we can use this equation:
KE = 20 Joules / Coulombs * </span>1.60217662 × 10-19<span> coulombs
KE = 1.25x10^20 Joules
Therefore, the amount of kinetic energy that the electron has after ionization is </span>1.25x10^20 Joules or 1.25x10^17 kJ. <span />
t=5s
it was correct on my do-now
so I hope it was useful for you
Answer:
35°C
Explanation:
q = mCΔT
2130 J = (0.200 kg) (710 J/kg/°C) (T − 20.0°C)
T = 35°C
Answer:
Explanation:
Given that,
Basket ball is drop from height
H=10m
It is dropped on planet mass
And the acceleration due to gravity on Mars is given as
g= 3.7m/s²
Time taken for the ball to reach the ground
Initial velocity of the body is zero
u=0m/s
Using equation of motion: free fall
H = ut + ½gt²
10 = 0•t + ½ × 3.7 ×t²
10 = 0 + 1.85t²
10 = 1.85t²
Then, t² =10/1.85
t² = 5.405
t = √ 5.405
t = 2.325seconds
So the time the ball spend on the air before reaching the ground is 2.325 seconds