For the answer tot he questions above, I know this one.
The answers are
<span>-sets 2-3 hours after the sun sets - waxing crescent
-occurs about 3 days before the new moon - waning crescent
-occurs 14 days after the new moon - full moon
-rises at about the time the sun sets - full moon
-visible due south at midnight - full moon
-visible near eastern horizon just before sunrise waning crescent
-visible near western horizon about an hour after sunset waxing crescent</span>
Answer: 3.7×10¹²watts
Explanation:
Radiation is one of the mode of heat transfer and modes differs from each other based on their medium of heat transfer. Radiation is a process of transferring heat energy from one point to another without heating the intervening medium (no material medium is required).
According to Stefan's law of radiation, the rate of emission of radiant energy is directly proportional to the fourth power of its absolute temperature.
Mathematically, R = eAT⁴
e is constant of proportionality called emissivity. Emissivity varies depending on the type of body being considered.
For the question, we are considering black body and emissivity of black body is 1 being a perfect body.
A is the area of the body
T is the absolute temperature
e = 1
A = 0.5cm²
T = 1650°C
Rate of radiation = 1×0.5×1650⁴
= 3.7×10¹²watts.
The hole will therefore radiate 3.7×10¹²watts
Upward force provided by the branch is 260 N
<u>Explanation:</u>
Given -
Mass of Gibbon, m = 9.3 kg
Length of the branch, r = 0.6 m
Speed of the movement, v = 3.3 m/s
Upward force, T = ?
The tension force in the rod must be greater than the weight at the bottom of the swing in order to provide an upward centripetal acceleration.
Therefore,
F net = T - mg
F net = ma = mv²/r
Thus,
T = mv²/r + mg
T = m ( v²/r + g)
T = 9.3 [ ( 3.3)² / 0.6 + 9.8]
T = 259.9 N ≈ 260 N
Therefore, upward force provided by the branch is 260 N
Answer:
R=19.5m
= 4.65° S of W
Explanation:
Refer the attached fig.
displacement of the x and y components
x-component displacement is (
) = 
= A
(20°) + B
(40°)
= -12.0
(20°) + 20.0
(40°)
= -19.425m
x-component displacement is (
) = 
= A
(20°) - B
(40°)
= 12.0
(20°) - 20.0
(40°)
= -1.579
resultant displacement
∴
R = 
=
=19.5m
= 
= 
= 4.65° S of W
Answer:
= 6.8 N
Explanation:
T = mg + ma
T = tension, N
m = mass, kg
g = gravitational force, 9.8 m/s2²
a = acceleration, m/s²
a =( 8.5²) / 3
a = 24.08
T = mg + ma
T = m (g + a)
T = 0.2 ( 9.8 + 24.08)
T = 0.2 ( 33.88)
T = 6.776N
≅ 6.8N