Answer:
This is a postulate which states that through any two points, there is exactly one line.
Step-by-step explanation:
A postulate is a statement that is assumed true without proof.
Answer:
a) 375
b) 7062.75 mm²
Step-by-step explanation:
b) We need to find the shortest possible width and length to get the smallest possible area.
To get the boundaries for 19.4, we go on to the next significant figure (the hundredths) and ± 5 of them.
The boundaries are, therefore: 19.35 - 19.45
As for the length, we can see they've added 5 units as the measurement is correct to 2 sig' figures, which is the tens.
And so, if we do as we did before, we go to the next sig' figure (the units) and ± 5 of them, we get the boundaries to be 365 - 375.
Now, we just multiply the lower bounds of the length and width to get the minimal/lower-bound area:
365 * 19.35 = 7062.75 mm²
Answer:
Step-by-step explanation:
x, height of men is N(69, 2.8)
Sample size n =150
Hence sample std dev = 
Hence Z score = 
A) Prob that a random man from 150 can fit without bending
= P(X<78) = P(Z<3.214)=1.0000
B) n =75
Sample std dev = 
P(X bar <72) = P(Z<9.28) = 1.00
C) Prob of B is more relevent because average male passengers would be more relevant than a single person
(D) The probability from part (b) is more relevant because it shows the proportion of flights where the mean height of the male passengers will be less than the door height.
The maximum occurs when the derivative of the function is equal to zero.

Then evaluate the function for that time to find the maximum population.

Depending on the teacher, the "correct" answer will either be the exact decimal answer or the greatest integer of that value since you cannot have part of a rabbit.
Answer:
The answer is "4.5"
Step-by-step explanation:
Given value:

formula:




if the sunrise value is =12

