<h2>For Second Solid Lumped System is Applicabe</h2>
Explanation:
Considering heat transfer between two identical hot solid bodies and their environments -
- If the first solid is dropped in a large container filled with water, while the second one is allowed to cool naturally in the air than for second solid, the lumped system analysis more likely to be applicable
- The reason is that a lumped system analysis is more likely to be applicable in the air than in water as the convection heat transfer coefficient so that the Biot number is less than or equal to 0.1 that is much smaller in air
Biot number = the ratio of conduction resistance within the body to convection resistance at the surface of the body
∴ For a lumped system analysis Biot number should be less than 0.1
<span>E = h x f </span>
<span>. . . then : </span>
<span>f = E / h </span>
<span>f = 4,41•10^-19 / 6,62•10^-34 </span>
<span>f = 6,66•10^14 Hz (s^-1) </span>
<span>b/ What is the wavelength of this light ? </span>
<span>- - - - - - - - - - - - - - - - - - - - - - - - - - - - </span>
<span>λ = c / f </span>
<span>λ = 3•10^8 / 6,66•10^14 </span>
<span>λ = 4,50•10^-7 m </span>
Answer:
d = 2021.6 km
Explanation:
We can solve this distance exercise with vectors, the easiest method s to find the components of the position of each plane and then use the Pythagorean theorem to find distance between them
Airplane 1
Height y₁ = 800m
Angle θ = 25°
cos 25 = x / r
sin 25 = z / r
x₁ = r cos 20
z₁ = r sin 25
x₁ = 18 103 cos 25 = 16,314 103 m
= 16314 m
z₁ = 18 103 sin 25 = 7,607 103 m= 7607 m
2 plane
Height y₂ = 1100 m
Angle θ = 20°
x₂ = 20 103 cos 25 = 18.126 103 m = 18126 m
z₂ = 20 103 without 25 = 8.452 103 m = 8452 m
The distance between the planes using the Pythagorean Theorem is
d² = (x₂-x₁)² + (y₂-y₁)² + (z₂-z₁)²2
Let's calculate
d² = (18126-16314)² + (1100-800)² + (8452-7607)²
d² = 3,283 106 +9 104 + 7,140 105
d² = (328.3 + 9 + 71.40) 10⁴
d = √(408.7 10⁴)
d = 20,216 10² m
d = 2021.6 km
We are given information:

If we apply Newton's second law we can calculate acceleration:
F = m * a
a = F / m
a = 25000 / 10000
a = 2.5 m/s^2
Now we can use this information to calculate change of speed.
a = v / t
v = a * t
v = 2.5 * 120
v = 300 m/s
Force is being applied in direction that is opposite to a direction in which space craft is moving. This means that final speed will be reduced.
v = 1200 - 300
v = 900 m/s
Formula for momentum is:
p = m * v
Initial momentum:
p = 10000 * 1200
p = 12 000 000
p = 12 *10^6 kg*m/s
Final momentum:
p = 10000 * 900
p = 9 000 000
p = 9 *10^6 kg*m/s
T= 24.5 feet per second. That is the velocity it reaches at the end of its fall