answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Travka [436]
2 years ago
8

Find the standard form of the equation of the parabola with a focus at (3, 0) and a directrix at x = -3.

Mathematics
1 answer:
Nikitich [7]2 years ago
6 0
Check the picture below.

now, keep in mind that the focus point is at 3,0 and the directrix is to the left-hand-side of it, therefore, is a horizontal parabola, and it opens to the right-hand-side, like in the picture.

keep in mind that the vertex is half-way between the focus point and directrix, at a distance "p" from either one, notice the "p" distance is just 3 units, since the parabola is opening to the right, "p" is positive.

\bf \textit{parabola vertex form with focus point distance}\\\\
\begin{array}{llll}
\boxed{(y-{{ k}})^2=4{{ p}}(x-{{ h}})}
\\\\
(x-{{ h}})^2=4{{ p}}(y-{{ k}})
\end{array}
\qquad 
\begin{array}{llll}
vertex\ ({{ h}},{{ k}})\\\\
{{ p}}=\textit{distance from vertex to }\\
\qquad \textit{ focus or directrix}
\end{array}\\\\
-------------------------------\\\\
\begin{cases}
h=0\\
k=0\\
p=3
\end{cases}\implies (y-0)^2=4(3)(x-0)\implies y^2=12x\implies \cfrac{1}{12}y^2=x

You might be interested in
An exponential function and a quadratic function are graphed below. Which of the following is true of the growth rate of the fun
aleksley [76]
Given an exponential function, say f(x), such that f(0) = 1 and f(1) = 2 and a quadratic finction, say g(x), such that g(0) = 0 and g(1) = 1.

The rate of change of a function f(x) over an interval
a \leq x \leq b
is given by
\frac{f(b)-f(a)}{b-a}

Thus, the rate of change (growth rate) of the exponential function, f(x) over the interval
0 \leq x \leq 1
is given by
\frac{f(1)-f(0)}{1-0} = \frac{2-1}{1} =1

Similarly, the rate of change (growth rate) of the quadratic function, g(x) over the interval
0 \leq x \leq 1
is given by
\frac{g(1)-g(0)}{1-0} = \frac{1-0}{1} =1

Therefore, the exponential grows at the same rate as the quadratic in the interval <span>0 \leq x \leq 1.</span>
3 0
2 years ago
Read 2 more answers
Imaginá que tenés 125 dados cúbicos del mismo tamaño ¿Cuantos dados de altura tiene el cubo de mayor tamaño que podés armar apil
kumpel [21]

Answer:

(i) Debemos apilar 5 dados para construir el cubo de mayor tamaño.

(ii) Se necesita 121 dados cuadrados para formar el cuadrado con la mayor cantidad de dados posibles, quedando 4 dados sobrantes.

Step-by-step explanation:

(i) Sabemos por la Geometría Euclídea del Espacio que un cubo es un sólido regular con 6 caras cuadradas y longitudes iguales. Cada dado tiene un volumen de 1 dado cúbico y 125 dados dan un volumen total de 125 dados cúbicos.

El volumen de un cubo está dado por la siguiente fórmula:

V = L^{3}

Donde:

L - Longitud de la arista, medida en dados.

V - Volumen del cubo, medido en dados cúbicos.

Ahora, necesitamos despejar la longitud de la arista para calcular la altura máxima posible:

L = \sqrt[3]{V}

Dado que V = 125\,dados^{3}, encontramos que la altura del cubo de mayor tamaño sería:

L =\sqrt[3]{125\,dados^{3}}

L = 5\,dados

Debemos apilar 5 dados para construir el cubo de mayor tamaño.

(ii) El área cuadrada formada por cubos está determinada por la siguiente fórmula:

A = L^{2}

Donde:

L - Longitud de arista, medida en dados.

A - Área, medida en dados cuadrados.

Puesto que la longitud de arista se basa en un conjunto discreto, esto es, el número de dados disponibles, debemos encontrar el valor máximo de L tal que no supere 125 y de un área entera. Es decir:

L \leq 125\,dados

Si cada cubo tiene un área de 1 dado cuadrado, entonces un cuadrado conformado por 125 dados tiene un área total de 125 dados cuadrados. Entonces:

L^{2}< 125\,dados^{2}

Esto nos lleva a decir que:

L < 11.180\,dados

Entonces, la longitud máxima del cuadrado con la mayor cantidad de cubos posible es de 11 dados. El número total requerido de cubos es el cuadrado de esa cifra, es decir:

n = (11\,dados)^{2}

n = 121\,dados

Se necesita 121 dados cuadrados para formar el cuadrado con la mayor cantidad de dados posibles, quedando 4 dados sobrantes.

4 0
2 years ago
The basketballs Noah packed had two different prices. Of the total number of basketballs sold, 60% had a price that was $21 more
kirill115 [55]

Answer:

$(8967/n + 8.4)

Step-by-step explanation:

0.4nx + 0.6n(x+21) = 8967

nx + 12.6n = 8967

x = 8967/n - 12.6

x+21 = 8967/n + 8.4

Where n is the no. of balls

Example: if total balls were 300

n = 300

More expensive one would cost:

8967/300 + 8.4 = $38.29

8 0
2 years ago
Which are the solutions of x2 = 19x + 1?
Finger [1]

Answer:

(\frac{19-\sqrt{365}} {2},\frac{19+\sqrt{365}} {2})

Step-by-step explanation:

we have

x^2=19x+1

we know that

The formula to solve a quadratic equation of the form

ax^{2} +bx+c=0

is equal to

x=\frac{-b\pm\sqrt{b^{2}-4ac}} {2a}

in this problem we have

-x^{2}-19x-1=0  

so

a=1\\b=-19\\c=-1

substitute in the formula

x=\frac{-(-19)\pm\sqrt{-19^{2}-4(1)(-1)}} {2(1)}

x=\frac{19\pm\sqrt{365}} {2}

x=\frac{19+\sqrt{365}} {2}

x=\frac{19-\sqrt{365}} {2}

(\frac{19-\sqrt{365}} {2},\frac{19+\sqrt{365}} {2})

therefore

StartFraction 19 minus StartRoot 365 EndRoot Over 2 EndFraction comma StartFraction 19 + StartRoot 365 EndRoot Over 2 EndFraction

6 0
2 years ago
Read 2 more answers
in 2 h, kelly laid new floor tile over 1/5 of the room. when she was joined by annette, the rest of the work was completed in 3h
jeyben [28]

Answer: Annette will take 6 hours to do the entire job alone.

Step-by-step explanation:

Given: Time taken by Kelly to do \dfrac{1}{5} of job = 2 hours

i.e. Time for complete job done alone by Kelly =5\times2=10\ hours

Rest of work = 1-\dfrac{1}{5}=\dfrac{4}{5} of the job

\dfrac{4}{5}  of the complete job done by both Kelly and Annette in 3 hours

Time would be taken by then to do entire job together = 3\times\dfrac{5}{4}=3.75\ hours

Let t be the time taken by Annette to do job alone.

Then, as per situation

\dfrac{1}{3.75}=\dfrac{1}{10}+\dfrac{1}{t}\\\\\Rightarrow\ \dfrac{1}{t}=\dfrac{1}{3.75}-\dfrac{1}{10}\\\\\Rightarrow\ \dfrac{1}{t}=\dfrac{4}{15}-\dfrac{1}{10}\\\\\Rightarrow\ \dfrac{1}{t}=\dfrac{1}{6}\\\\\Rightarrow\ t=6

hence, Annette will take 6 hours to do the entire job alone.

7 0
2 years ago
Other questions:
  • A tortilla chip workstation produces 1,000 chips in 20 seconds. what is its bottleneck time
    13·1 answer
  • What three different equations that have x = 5 as a solution
    7·2 answers
  • Nectar foraging by bumblebees Suppose that, instead of the specific nectar function in Example 2, we have an arbitrary function
    6·1 answer
  • Dominic runs a farm stand that sells peaches and grapes yesterday Dominic sold 34 pounds of peaches and 45 lb of grapes for a to
    7·1 answer
  • A........ divides a two - dimensional shape into two congruent shapes​
    10·2 answers
  • The graph represents the balance of Harrison’s car loan in the months since purchasing the car. A coordinate plane showing Car L
    12·1 answer
  • For the school's sports day, a group of students prepared 12 1/2 litres of lemonade. At the end of the day they had 2 5/8 litres
    12·1 answer
  • A single bacterium lands in your mouth and starts growing by a factor of 4 every hour. After how many hours will the number of b
    9·1 answer
  • A local city collects 8% sales tax. If the total purchase was $216.00, then how much was collected for sales tax?
    7·1 answer
  • If 2 tacos and 5 drinks cost $20, And three tacos and five drinks cost $25 how much does a taco cost
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!