Answer:
When the blood and the dialysate are flowing in the same direction, as the the dialysate and the blood move away from the region of higher concentration of the urea, to a region distant from the source, the concentration of urea in the blood stream and in the dialysis reach equilibrium and diffusion across the semipermeable membrane stops within the higher filter regions such as II, III, IV or V
However, for counter current flow, as the concentration of the urea in the blood stream becomes increasingly lesser the, it encounters increasingly unadulterated dialysate coming from the dialysate source, such that diffusion takes place in all regions of the filter
Explanation:
Answer:
Tangential velocity = 10.9 m/S
Explanation:
As per the data given in the question,
Force = 20 N
Time = 1.2 S
Length = 16.5 cm
Radius = 33.0 cm
Moment of inertia = 1200 kg.cm^2 = 1200 × 10^(-4) kg.m^2
= 1200 × 10^(-2) m^2
Revolution of the pedal ÷ revolution of wheel = 1
Torque on the pedal = Force × Length
= 20 × 16.5 10^(-2)
= 3.30 N m
So, Angular acceleration = Torque ÷ Moment of inertia
= 3.30 ÷ 12 × 10^(-2)
= 27.50 rad ÷ S^2
Since wheel started rotating from rest, so initial angular velocity = 0 rad/S
Now, Angular velocity = Initial angular velocity + Angular Acceleration × Time
= 0 + 27.50 × 1.2
= 33 rad/S
Hence, Tangential velocity = Angular velocity × Radius
= 33 × 33 × 10^(-2)
= 10.9 m/S
Find Displacement and Distance
displacement ...
north is 700+400+100 =1200m n
south=1200m
1200-1200=0
east is 300+300=600m
west is 600m
600-600=0
back at dtart. displ zero
distance is 700+ 300m + 400 m + 600m + 1200m + 300m + 100m = 3600m
Answer:

Explanation:
First of all, we need to find the pressure exerted on the sphere, which is given by:

where
is the atmospheric pressure
is the water density
is the gravitational acceleration
is the depth
Substituting,

The radius of the sphere is r = d/2= 1.1 m/2= 0.55 m
So the total area of the sphere is

And so, the inward force exerted on it is

Answer:
Yes, ultraviolet light can turn a rubber into solid due to prolong exposure.
Explanation:
A rubber is a material with an elastic property, causing it to be deform by an external force but takes its shape when the force is removed. Light is an electromagnetic wave which causes the sensation of vision. It transfers energy to a medium during propagation through the medium.
Generally, most light do not cause hardness of a rubber. But an ultraviolet light can cause rubber to become solid over a period of time. This is possible if there is a prolong exposure of the rubber, and because of the evaporation of volatiles in the polymer material. Ultraviolet light are known to cause a rubber to become solid.