The correct answer to the question is that the lost mass has been converted into energy.
EXPLANATION:
From Einstein's theory, we know that energy and mass are inter convertible .
When some amount of mass is lost, same amount of energy equivalent to mass is produced.
Let us consider m is the mass lost during any reaction. Hence, the amount of energy produced will be-
Energy E =
Here, c is the velocity of light i.e c = 
As per the question, uranium-235 undergoes fission. The amount of mass defect is 0.1 %.
The mass defect is defined as the difference between mass of reactants and products. During the fission, energy is produced.
The energy produced in this reaction is nothing else than the energy equivalent to mass defect. Approximately 199.5 Mev of energy equivalent to this mass defect is produced in this reaction.
Answer:
D:
Explanation:
Conduction because the heat energy is transferring directly from the separate metals convection involves "currents" like in a liquid or a gas. When you turn on the stove with a pot of water on the burner the water at the bottom of the pot gets heated first almost immediately this water rises and cooler water falls. Basically the water is "stirring" or shifting, exchanging the heat energy this is why water heats so evenly.
Kinetic energy =0.5*mas*velocity^2
Joules =lg*m^2/s^2
1 miles= 1608.34 meters
1 hour= 3600 Sec
1 ounce =28.35g =0.02836 kg
What is a the kinetic energy, in joules, of this baseball when it is thrown by a major-league pitcher at 96.0 mi/h?
Answer: KE=0.5m*v^2
=0.5*(5.12 o *0.02835 kg/1 ounce)* (95 miles/h*1609.34m/1 miles* 1hr/3600s^)2
131kg*m^2/s^2= 131 joules
By what factor with the kinetic energy change if the speed of the baseball is decreased to 55.0 mi/h?
Answer: KE=0.5*m*v^2
=0.5*(5.13 o*0.02835kg/1 ounce)*(55 miles/ h*1609.34m/1 mile*1 hr/3600s)^2
=44.0kg*m^2s^2=44.0 joules
131/44= 2.98, so decreased by a factor of approximately 3
Answer:
The force does the ceiling exert on the hook is 269.59 N
Explanation:
Applying the second Newton law:
F = m*a
From the attached diagram, the net force in object 1 is:

In object 2:

Adding the two equations:
(eq. 1)
The torque:

Where
I = moment of inertia
α = angular acceleration
If the linear acceleration is

Torque due the tension is equal:

Substituting torque, mass, in equation 1, the expression respect the acceleration is:

Where
W₁ = 75 N
W₂ = 125 N
W = 80 N

The net force is:

Answer:
The average rate of energy transfer to the cooker is 1.80 kW.
Explanation:
Given that,
Pressure of boiled water = 300 kPa
Mass of water = 3 kg
Time = 30 min
Dryness friction of water = 0.5
Suppose, what is the average rate of energy transfer to the cooker?
We know that,
The specific enthalpy of evaporate at 300 kPa pressure


We need to calculate the enthalpy of water at initial state


We need to calculate the enthalpy of water at final state
Using formula of enthalpy

Put the value into the formula


We need to calculate the rate of energy transfer to the cooker
Using formula of rate of energy

Put the value into the formula


Hence, The average rate of energy transfer to the cooker is 1.80 kW.