answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
KiRa [710]
2 years ago
7

A professional boxer hits his opponent with a 1025 N horizontal blow that lasts 0.150 s. The opponent's total body mass is 116 k

g and the blow strikes him near his center of mass and while he is motionless in midair. Determine the following.
(a) impulse the boxer imparts to his opponent by this blow
kg · m/s
(b) the opponent's final velocity after the blow
m/s
(c) Calculate the recoil velocity of the opponent's 5.0-kg head if hit in this manner, assuming the head does not initially transfer significant momentum to the boxer's body.
m/s
Physics
1 answer:
mylen [45]2 years ago
5 0

Answer:

The impulse is  I  =  153.8 \ N \cdot s

The opponents velocity is  v=  1.33 m/s

The opponents head recoils velocity  v_r = 30.8 \ m/s

Explanation:

From the question we are told that

    The force of the blow is  F=  1025 \ N

    The duration of the blow is  t =  0.150

      The mass of the opponent is  m_o  =  116 \ kg

       The mass of the opponents head is  m_h  = 5 \ kg

The impulse the boxer imparts is mathematically represented as

         I  =  F *  t

substituting values

         I  =  1025 * 0.150

          I  =  153.8 \ N \cdot s

The impulse can also be mathematically evaluated as

         I  =  m_o * v

substituting values

          153.8  =  116 * v

          v=  \frac{153.8}{116}

          v=  1.33 m/s

The recoil velocity is mathematically represented as  

              v_r =  \frac{I}{m_h}

substituting values

                v_r =  \frac{153.8}{5}

                v_r = 30.8 \ m/s

You might be interested in
A car is traveling at 20 meters/second and is brought to rest by applying brakes over a period of 4 seconds. What is its average
frez [133]
 (u) = 20 m/s 
(v) = 0 m/s 
<span> (t) = 4 s 
</span>
<span>0 = 20 + a(4) 

</span><span>4 x a = -20 
</span>
so, the answer is <span>-5 m/s^2. or -5 meter per second</span>
8 0
2 years ago
Read 2 more answers
Springfield's "classic rock" radio station broadcasts at a frequency of 102.1 mhz. what is the length of the radio wave in meter
Mila [183]
The frequency of the radio wave is:
f=102.1 MHz = 102.1 \cdot 10^6 Hz

The wavelength of an electromagnetic wave is related to its frequency by the relationship
\lambda= \frac{c}{f}
where c is the speed of light and f the frequency. Plugging numbers into the equation, we find
\lambda= \frac{3 \cdot 10^8 m/s}{102.1 \cdot 10^6 Hz}= 2.94 m
and this is the wavelength of the radio waves in the problem.
7 0
2 years ago
The formation of magma within Earth is NOT caused by which of the following processes? A. decompression (drop in pressure) B. ad
Lunna [17]

Answer:

D. loss of volatiles to the atmosphere

Explanation:

The name magma designates matter in a semi-fluid state - resulting from the fusion of silicates containing dispersed solid gases and minerals and other compounds that make up the rocks, at temperatures between 700 and 1200 ° C - that forms the region beneath the crust. land. When it is inside the earth it is specifically named magma and lava when it is ejected to the surface

There are three systems by which magma can be produced on earth:

<u> Temperature</u> rise by concentration of r<u>adioactive elements or by friction of lithospheric plates</u>.

<u> Pressure decrease,</u> since the melting point decreases.

Adding <u>water</u> A rock begins to melt earlier if it contains water because the –OH groups effectively break the Si-O bonds.

A rock is formed by a set of minerals, each of which has a characteristic melting point so a rock does not have a single melting point but a temperature range in which the rock melts into parts, leaving others solid parts. Between the point at which a solid rock begins to melt and the melting end (liquid point) the rock is partially molten.

The rise of magmas depends on their physical-chemical conditions (viscosity, density, volatile element content), on the tectonic peculiarities of the region where they are found and on the rocks to be traversed. Acid magmas are light and viscous, rise easily and cause large deposits. The basic magmas, of greater density, are less viscous and ascend with greater difficulty than the previous ones.

8 0
2 years ago
A 5kg bucket hangs from a ceiling on a rope. A student attaches a spring scale to the buckets handle and pulls horizontally on t
7nadin3 [17]
I don’t know what the angle is in your diagram so I used the angle from the vertical.

6 0
2 years ago
When jumping, a flea accelerates at an astounding 1000 m/s2 but over the very short distance of 0.50 mm. If a flea jumps straigh
Nadusha1986 [10]

Answer:

The flea reaches a height of 51 mm.

Explanation:

Hi there!

The equations of height and velocity of the flea are the following:

During the jump:

h = h0 + v0 · t + 1/2 · a · t²

v = v0 + a · t

While in free fall:

h = h0 + v0 · t + 1/2 · g · t²

v = v0 + g · t

Where:

h = height of the flea at time t.

h0 = initial height.

v0 = initial velocity.

t = time.

a = acceleration of the flea due to the jump.

v = velocity of the flea at time t.

g = acceleration due to gravity.

First, let's calculate how much time it takes the flea to reach a height of 0.0005 m. With that time, we can calculate the speed reached by the flea during the jump:

h = h0 + v0 · t + 1/2 · a · t²

If we place the origin of the frame of reference on the ground, then, h0 = 0. Since the flea is initially at rest, v0 = 0. Then:

h = 1/2 · a · t²

We have to find the value of t for which h = 0.0005 m:

0.0005 m = 1/2 · 1000 m/s² · t²

0.0005 m / 500 m/s² = t²

t = 0.001 s

Now, let's find the velocity reached in that time:

v = v0 + a · t   (v0 = 0)

v = a · t

v = 1000 m/s² · 0.001 s

v = 1.00 m/s

When the flea is at a height of 0.50 mm, its velocity is 1.00 m/s. This initial velocity will start to decrease due to the downward acceleration of gravity. When the velocity is zero, the flea will be at the maximum height. Using the equation of velocity, let's find the time at which the flea is at the maximum height (v = 0):

v = v0 + g · t

At the maximum height, v = 0:

0 m/s = 1.00 m/s - 9.81 m/s² · t

-1.00 m/s / -9.81 m/s² = t

t = 0.102 s

Now, let's find the height reached by the flea in that time:

h = h0 + v0 · t + 1/2 · g · t²

h = 0.0005 m + 1.00 m/s · 0.102 s - 1/2 · 9.81 m/s² · (0.102 s)²

h = 0.051 m

The flea reaches a height of 51 mm.

5 0
2 years ago
Other questions:
  • In a digital multimeter, what changes inside the meter when you push the button to change from 200v range to the 20v range? by w
    7·1 answer
  • Roads often have to be repaved because they crack over time. Sometimes this cracking is due to the fact that the roads (as well
    7·1 answer
  • The strength of intermolecular forces between particles affects physical properties of substances such as boiling point, melting
    12·2 answers
  • A 2.0-kg object is lifted vertically through 3.00 m by a 150-N force. How much work is done on the object by gravity during this
    9·2 answers
  • A car traveling at 70 mph70 mph down the interstate collides with a bug trying to cross the highway. Which of the following stat
    9·1 answer
  • A physics student stands on the rim of the canyon and drops a rock. The student measures the time for it to reach the bottom to
    6·1 answer
  • John pushes his brother Danny on a skateboard. John applies a force of 29 N and Danny's acceleration is 0.4 m/s^2
    11·2 answers
  • Consider an acrylic sheet of thickness L = 5 mm that is used to coat a hot, isothermal metal substrate at Th = 300°C. The proper
    6·1 answer
  • Concerned with citizen complaints of price gouging during past hurricanes, Florida's state government passes a law setting a pri
    12·1 answer
  • Ben walks 500 meters from his house to the corner store. He then walks back toward his house, but continues 200 meters past his
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!