answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Zarrin [17]
2 years ago
3

Which characteristics do photosynthesis and cellular respiration have in common? Check all that apply.

Chemistry
2 answers:
egoroff_w [7]2 years ago
8 0

Both processes involve a cycle of chemical reactions.

Both processes involve energy conversions.

Both processes use and produce ATP.

<span>Both processes use an electron transport chain.</span>


SpyIntel [72]2 years ago
5 0

Answers are:  

Both processes involve a cycle of chemical reactions.

Both processes involve energy conversions.

Both processes use and produce ATP.

Both processes use an electron transport chain.

Chemical reaction of cellular respiration (convert biochemical energy):

C₆H₁₂O₆ + 6O₂ → 6CO₂ + 6H₂O.  

In cellular respiration where organic matter is transformed into carbon dioxide and energy is released for production of ATP.

Glucose and oxygen are reactants and carbon dioxide, water and energy are products of this chemical reaction; cellular respiration creates an energy molecule (ATP) when glucose is broken down.

The overall balanced photosynthesis reaction:  

6CO₂ + 6H₂O → C₆H₁₂O₆ + 6O₂.  

Plants (not animals) convert solar energy into the chemical energy of sugars (food).

The pigment chlorophyll absorbs one photon and loses one electron (it passed throw an electron transport chain) in the light-dependent reactions.

You might be interested in
What is the pH of a solution made by mixing 15.00 mL of 0.100 M HCl with 50.00 mL of 0.100 M KOH? Assume that the volumes of the
denis23 [38]

Answer:

The correct answer is: pH = 12.73

Explanation:

The <em>neutralization reaction</em> between HCl and KOH is given by the following chemical equation:

HCl + KOH ⇒ KCl + H₂O

Since HCl is a strong acid and KOH is a strong base, HCl is completely dissociated into H⁺ and Cl⁻ ions, whereas KOH is dissociated completely into K⁺ and OH⁻ ions.

For acids, the number of equivalents is given by the moles of H⁺ ions (in this case: 1 equivalent per mol of HCl). For bases, the number of equivalents is given by the moles of OH⁻ ions (in this case: 1 equivalent per mol of KOH).

The H⁺ ions from HCl will react with OH⁻ ions of KOH to give H₂O. The pH is calculated from the difference between the equivalents of H⁺ and OH⁻:

equivalents of H⁺= volume HCl x Molarity HCl

                            = (15.0 mL x 1 L/1000 mL) x 0.100 mol/L

                            = 1.5 x 10⁻³ eq H⁺

equivalents of OH⁻= volume KOH x Molarity KOH

                               = (50.0 mL x 1 L/1000 mL) X 0.100 mol/L

                               = 5 x 10⁻³ eq OH⁻

There are more OH⁻ ions than H⁺ ions. The excess of OH⁻ (that did not react with H⁺ ions) is calculated as follows:

OH⁻ ions= (5 x 10⁻³ eq OH⁻) -  (1.5 x 10⁻³ eq H⁺) = 3.5 x 10⁻³ eq OH⁻= 3.5 x 10⁻³ moles OH⁻  

As the volumes of the solutions are additive, the total volume of the solution is:

V= 15.0 mL + 50.0 mL = 65.0 mL= 0.065 L

So, the concentration of OH⁻ ions in the solution is given by:

[OH⁻] = moles OH⁻/V= (3.5 x 10⁻³ moles OH⁻)/0.065 L = 0.054 mol/L = 0.054 M  

From  [OH⁻], we can calculate pOH:

pOH = -log [OH⁻] = -log (0.054) = 1.27

Finally, we know that pH + pOH= 14; so we calculate pH:

pH= 14 - pOH = 14 - 1,27 =  12.73                                                            

8 0
3 years ago
Aluminum oxide has a composition of 52.9% aluminum and 47.1% oxygen by mass. if 16.4 g of aluminum reacts with oxygen to form al
Dafna1 [17]
The balanced chemical reaction is written as:

4Al + 3O2 = 2Al2O3

To determine the mass of oxygen gas that would react with the given amount of aluminum metal, we use the initial amount and relate this amount to the ratio of the substances from the chemical reaction. We do as follows:

moles Al = 16.4 g ( 1 mol / 26.98 g ) = 0.61 mol Al
moles O2 = 0.61 mol Al ( 3 mol O2 / 4 mol Al ) = 0.46 mol O2
mass O2 = 0.46 mol O2 ( 32.0 g / mol ) = 14.59 g O2

Therefore, to completely react 16.4 grams of aluminum metal we need a minimum of 14.59 grams of oxygen gas.
3 0
2 years ago
Sodium oxide (Na2O) crystallizes in a structure in which the O2– ions are in a face - centered cubic lattice and the Na+ ions ar
melisa1 [442]

We have to know the number of Na⁺ ions in the unit cell.

The number of Na⁺ ions in the unit cell is (D) 8.

Sodium oxide (Na2O) crystallizes in a structure in which the O2– ions are in a face - centered cubic lattice and the Na+ ions are in tetrahedral holes.

O²⁻ ions are in a face centred cubic lattice, so the number of O²⁻ ions per unit cell is equal to 4. The number of  tetrahedral hole= 2 X 4=8. Na+ ions are present in tetrahedral holes, which indicates there are 8 number of Na+ ions in the unit cell.


3 0
2 years ago
Consider the following reactions and their respective equilibrium constants: NO(g)+12Br2(g)⇌NOBr(g)Kp=5.3 2NO(g)⇌N2(g)+O2(g)Kp=2
maxonik [38]

Answer:

Equilibrium constant of the given reaction is 1.3\times 10^{-29}

Explanation:

NO+\frac{1}{2}Br_{2}\rightleftharpoons NOBr....(K_{p})_{1}=5.3

2NO\rightleftharpoons N_{2}+O_{2}....(K_{p})_{2}=2.1\times 10^{30}

The given reaction can be written as summation of the following reaction-

2NO+Br_{2}\rightleftharpoons 2NOBr

N_{2}+O_{2}\rightleftharpoons 2NO

......................................................................................

N_{2}+O_{2}+Br_{2}\rightleftharpoons 2NOBr

Equilibrium constant of this reaction is given as-

\frac{[NOBr]^{2}}{[N_{2}][O_{2}][Br_{2}]}

=(\frac{[NOBr]}{[NO][Br_{2}]^{\frac{1}{2}}})^{2}(\frac{[NO]^{2}}{[N_{2}][O_{2}]})

=\frac{(K_{p})_{1}^{2}}{(K_{p})_{2}}

=\frac{(5.3)^{2}}{2.1\times 10^{30}}=1.3\times 10^{-29}

7 0
2 years ago
Read 2 more answers
6.0 g of a certain Compound X, known to be made of carbon, hydrogen and perhaps oxygen, and to have a molecular molar mass of 13
vodomira [7]

<u>Answer:</u>

<em>The molecular formula of X is given as C_7 H_6 O_3</em>

<em></em>

<u>Explanation:</u>

Moles $C O_{2}=\frac{\text { mass }}{\text { molar mass }}=\frac{13.39 \mathrm{g}}{44.01 \mathrm{g} \text { per mole }}=0.304 \mathrm{mol}$\\\\moles $\mathrm{C}=$ moles $\mathrm{CO}_{2}=0.304 \mathrm{mol}$

mass $C=$ moles $\times$ molar mass $=0.304 \mathrm{mol} \times 12 \frac{g}{m o l}=3.65g$\\\\moles $\mathrm{H}_{2} \mathrm{O}=\frac{2.35 \mathrm{g}}{18.02 \mathrm{g} \text { permole }}=0.130 \mathrm{mol}$\\\\moles $\mathrm{H}=2 \times$ moles $\mathrm{H}_{2} \mathrm{O}=0.130 \times 2=0.260 \mathrm{mol}$\\\\Mass $\mathrm{H}=0.260 \mathrm{mol} \times 1.008 \frac{g}{\mathrm{mol}}=0.262 \mathrm{g}$

mass O = Total mass of the compound - (mass of C + mass of H)

=6.0 g - ( 3.65 + 0.262 ) g

=2.09 g

moles $O=\frac{2.09 g}{16 g \text { per mole }}=0.131 \mathrm{mol}$

Least moles is for O that is 0.131mol and dividing all by the least we get

$\begin{aligned} C &=\frac{0.304}{0.131}=2.3 \\\\ H &=\frac{0.260}{0.131}=2 \\\\ O &=\frac{0.131}{0.131}=1 \end{aligned}$

Since 2.3 is a fraction it has to be converted to a whole number so we multiply all the answers by 3

\\$C 2.3 \times 3=7$\\\\$H 2 \times 3=6$\\\\$O 1 \times 3=3$

So the empirical formula is C_7 H_6 O_3

Empirical formula mass

=(7 \times 12) +(6\times1.008)+(3\times16)=138.048g

$n=\frac{\text { molar mass }}{\text { empirical formula mass }}=\frac{138}{138.048}=1$

Molecular formula =n × empirical formula

=1 \times C_7 H_6 O_3

Compound X  = C_7 H_6 O_3  is the Answer

8 0
2 years ago
Other questions:
  • Why is nonpoint source pollution potentially more harmful than point source pollution?
    7·2 answers
  • Calculate the energy for one mole of photons (an einstein) for light absorbed at 6.90 × 102 nm.
    7·2 answers
  • Contractile proteins are found in _____.
    9·2 answers
  • What is the number of moles in 15.0 g AsH3?
    12·1 answer
  • Which statement is true about molarity and percent by mass?
    12·2 answers
  • Can one atom in this type of reaction win the "tug of war"? What might happen if it did?
    10·2 answers
  • The mole fraction of oxygen molecules in dry air is 0.2095. What volume of dry air at 1.00 atm and 25°C is required for burning
    9·1 answer
  • When aqueous solutions of AgNO3 and KI are mixed, AgI precipitates. The balanced net ionic equation is ________. When aqueous so
    6·1 answer
  • What amount of SeC16 is needed to produce 4.45 mol of chlorine gas in the
    14·1 answer
  • What is produced on the top of a pool of water by the mutual attraction between water molecules?
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!