answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Marianna [84]
2 years ago
14

Aluminum oxide has a composition of 52.9% aluminum and 47.1% oxygen by mass. if 16.4 g of aluminum reacts with oxygen to form al

uminum oxide, what mass of oxygen reacts?
Chemistry
1 answer:
Dafna1 [17]2 years ago
3 0
The balanced chemical reaction is written as:

4Al + 3O2 = 2Al2O3

To determine the mass of oxygen gas that would react with the given amount of aluminum metal, we use the initial amount and relate this amount to the ratio of the substances from the chemical reaction. We do as follows:

moles Al = 16.4 g ( 1 mol / 26.98 g ) = 0.61 mol Al
moles O2 = 0.61 mol Al ( 3 mol O2 / 4 mol Al ) = 0.46 mol O2
mass O2 = 0.46 mol O2 ( 32.0 g / mol ) = 14.59 g O2

Therefore, to completely react 16.4 grams of aluminum metal we need a minimum of 14.59 grams of oxygen gas.
You might be interested in
Describe how to use Le Chatelier’s principle to predict the possible ways a chemical system can respond to changes.
Andre45 [30]
Le Chatelier's principle simply explains how equilibria change as you change the conditions of a reaction. If you have a reaction that is at equilibrium lets say (A + 2B <--> C + D) by removing C or D we can drive the reaction forward and products more products. I can provide a more in-depth description if needed.
4 0
2 years ago
Read 2 more answers
If PbI2(s) is dissolved in 1.0MNaI(aq) , is the maximum possible concentration of Pb2+(aq) in the solution greater than, less th
fredd [130]

Answer:

\mathbf{s =\sqrt [3]{\dfrac{K_{sp}}{4}}}

Less than the concentration of Pb2+(aq) in the solution in part ( a )

Explanation:

From the question:

A)

We assume that s to be  the solubility of PbI₂.

The equation of the reaction is given as :

PbI₂(s) ⇌ Pb²⁺(aq) + 2I⁻(aq); Ksp = 7 × 10⁻⁹

 [Pb²⁺] =   s

Then [I⁻] = 2s

K_{sp} =\text{[Pb$^{2+}$][I$^{-}$]}^{2} = s\times (2s)^{2} =  4s^{3}\\s^{3} = \dfrac{K_{sp}}{4}\\\\s =\mathbf{ \sqrt [3]{\dfrac{K_{sp}}{4}}}\\\\\text{The mathematical expressionthat can be used to determine the value of  }\mathbf{s =\sqrt [3]{\dfrac{K_{sp}}{4}}}

B)

The Concentration of Pb²⁺  in water is calculated as :

\mathbf{s =\sqrt [3]{\dfrac{K_{sp}}{4}}}

\mathbf{s =\sqrt [3]{\dfrac{7*10^{-9}}{4}}}

\mathbf{s} =\sqrt[3]{1.75*10^{-9}}

\mathbf{s} =\mathbf{1.21*10^{-3}  \ mol/L }

The Concentration of Pb²⁺  in 1.0 mol·L⁻¹ NaI

\mathbf{PbCl{_2}}  \leftrightharpoons    \ \ \ \ \ \ \  \mathbf{Pb^{2+}}   \ \ \ \  \ +   \ \  \ \ \ \ \ \mathbf{2 I^-}

                             \ \ \ \ \ \ \  \ \   \ \  \ \ \ \ \ \ \  \mathbf0}   \ \ \ \  \ \ \ \ \ \   \ \ \ \ \ \mathbf{1.0}

                            \ \ \ \ \ \ \ \ \ \ \ \ \ \    \ \ \ \ \  \mathbf{+x}   \ \ \ \  \    \ \  \ \ \ \ \ \mathbf{+2x}

                            \ \ \ \ \ \ \ \ \ \ \ \ \ \    \ \ \ \ \  \mathbf{+x}   \ \ \ \  \    \ \  \ \ \ \ \ \mathbf{1.0+2x}

The equilibrium constant:

K_{sp} =[Pb^{2+}}][I^-]^2 \\ \\ K_{sp} = s*(1.0*2s)^2 =7*1.0^{-9} \\ \\ s = 7*10^{-9} \ \  m/L

It is now clear that maximum possible concentration of Pb²⁺ in the solution is less than that in the solution in part (A). This happens due to the  common ion effect. The added iodide ion forces the position of equilibrium to shift to the left, reducing the concentration of Pb²⁺.

3 0
2 years ago
Hydrochloric acid (75.0 mL of 0.250 M) is added to 225.0 mL of 0.0550 M Ba(OH)2 solution. What is the concentration of the exces
Shalnov [3]

Answer:  The concentration of excess [OH^-] in solution is 0.017 M.

Explanation:

1. Molarity=\frac{moles}{\text {Volume in L}}

moles of HCl=Molarity\times {\text {Volume in L}}=0.250\times 0.075=0.019moles

1 mole of HCl give = 1 mole of H^+

Thus 0.019 moles of HCl give = 0.019 mole of H^+

2. moles of Ba(OH)_2=Molarity\times {\text {Volume in L}}=0.0550\times 0.225=0.012moles

According to stoichiometry:

1 mole of Ba(OH)_2 gives = 2 moles of OH^-

Thus 0.012 moles of Ba(OH)_2 give = 2 \times 0.012=0.024 moles of OH^-

H^++OH^-\rightarrow H_2O

As 1 mole of H^+ neutralize 1 mole of OH^-

0.019 mole of H^+ will neutralize 0.019 mole of OH^-

Thus (0.024-0.019)= 0.005 moles of OH^- will be left.

[OH^-]=\frac{\text {moles left}}{\text {Total volume in L}}=\frac{0.005}{0.3L}=0.017M

Thus molarity of [OH^-] in solution is 0.017 M.

4 0
2 years ago
Read 2 more answers
The volume of a single strontium atom is 4.15×10-23 cm3. What is the volume of a strontium atom in microliters
Ivenika [448]

Answer:-  4.15*10^-^2^0\mu L

Solution:- It is a volume unit conversion problem where we are asked to convert the volume from cm^3 to microliters.

We know that:

1cm^3 = 1 mL

1mL=10^-^3L

and, 1L=10^6\mu L

Let's use these conversions factors for the desired conversion using dimensional as:

4.15*10^-^2^3cm^3(\frac{1mL}{1cm^3})(\frac{10^-^3L}{1mL})(\frac{10^6\mu L}{1L})

= 4.15*10^-^2^0\mu L

So, the answer is  4.15*10^-^2^0\mu L .

7 0
2 years ago
Which postulate of Dalton's theory is consistent with the following observation concerning the weights of reactants and products
hram777 [196]

<u>Answer:</u> This illustrates law of conservation of mass.

<u>Explanation:</u>

Dalton's theory is based on mainly two laws which are law of conservation of mass and law of constant proportion.

Law of conservation of mass states that mass can neither be created nor be destroyed but it can only be transformed from one form to another form.

This also means that total mass on the reactant side must be equal to the total mass on the product side.

The chemical equation for the decomposition of calcium carbonate follows:

CaCO_3\rightarrow CaO+CO_2

We are given:

Mass of calcium carbonate = 100 grams

Mass of calcium oxide = 56 grams

Mass of carbon dioxide = 44 grams

Total mass on reactant side = 100  g

Total mass on product side = 56 + 44 = 100 g

As, the total mass on reactant side is equal to the total mass on product side.

Thus, this illustrates law of conservation of mass.

6 0
2 years ago
Other questions:
  • What is the hydronium ion concentration of a solution whose pH is 7.30
    12·1 answer
  • Oxides of nitrogen are pollutant gases which are emitted from car exhausts.
    14·2 answers
  • You are on a field trip to a nearby lake for biology class and want to perform a quick analysis of the water’s approximate pH le
    6·2 answers
  • What is the poh of an aqueous solution at 25.0 °c that contains 1.35 × 10-8 m hydroxide ion?
    9·1 answer
  • Which of the following statements about monosaccharide structure is true?
    7·1 answer
  • Part A Name the complex ion [Fe(CN)6]^3- . The oxidation number of iron is +3. Part B Name the complex ion [Cu(NH3)2(H2O)4]^2+ .
    15·1 answer
  • To save time you can approximate the initial volume of water to ±1 mL and the initial mass of the solid to ±1 g. For example, if
    14·1 answer
  • he solutions in the arms of a U-tube are separated at the bottom of the tube by a selectively permeable membrane. The membrane i
    10·1 answer
  • In what type of environment would you most likely find Fish Species 1? Explain your answer.
    5·2 answers
  • Perform the following operation
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!