answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
sergejj [24]
2 years ago
3

The mass of a high speed train is 4.5×105kg, and it is traveling forward at a velocity of 8.3×101m/s. Given that momentum equals

mass times velocity, determine the values of m and n when the momentum of the train (in kg⋅m/s) is written in scientific notation.
Physics
1 answer:
sergey [27]2 years ago
4 0
 The mass of the train is 4.5 x10⁵ kg.

The speed of the train is 8.3 x 10¹ m/s. 

 The momentum of the train is equal to mass times velocity.

P = m*v   

P = (4.5 x 10⁵ kg)(8.3 x 10¹ m/s)   

P= 3.7350 E 7 kg m/s

If we reduce the numbers of significant values

 P = 3.7 E 7 kg m/s

 m is equal to  3.7

 n is equal to 7.
You might be interested in
Using energy considerations and assuming negligible air resistance, show that a rock thrown from a bridge 20.0 m above water wit
melamori03 [73]

Answer:

Explanation:

Given that,

Height of the bridge is 20m

Initial before he throws the rock

The height is hi = 20 m

Then, final height hitting the water

hf = 0 m

Initial speed the rock is throw

Vi = 15m/s

The final speed at which the rock hits the water

Vf = 24.8 m/s

Using conservation of energy given by the question hint

Ki + Ui = Kf + Uf

Where

Ki is initial kinetic energy

Ui is initial potential energy

Kf is final kinetic energy

Uf is final potential energy

Then,

Ki + Ui = Kf + Uf

Where

Ei = Ki + Ui

Where Ei is initial energy

Ei = ½mVi² + m•g•hi

Ei = ½m × 15² + m × 9.8 × 20

Ei = 112.5m + 196m

Ei = 308.5m J

Now,

Ef = Kf + Uf

Ef = ½mVf² + m•g•hf

Ef = ½m × 24.8² + m × 9.8 × 0

Ef = 307.52m + 0

Ef = 307.52m J

Since Ef ≈ Ei, then the rock thrown from the tip of a bridge is independent of the direction of throw

7 0
2 years ago
Jules is conducting an experiment involving friction. He is measuring the temperature of various objects and surfaces after quic
Semenov [28]

Answer:

The correct prediction will be:  

The temperature of the surface of the ball bearing when rubbed over glass will be the least.

The incorrect prediction:

The tennis ball over the linoleum floor will have no friction, as the temperatures will not change.

6 0
2 years ago
A solid uniform sphere of mass 1.85 kg and diameter 45.0 cm spins about an axle through its center. Starting with an angular vel
KengaRu [80]

Answer:

The net torque is 0.0372 N m.

Explanation:

A rotational body with constant angular acceleration satisfies the kinematic equation:

\omega^{2}=\omega_{0}^{2}+2\alpha\Delta\theta (1)

with ω the final angular velocity, ωo the initial angular velocity, α the constant angular acceleration and Δθ the angular displacement (the revolutions the sphere does). To find the angular acceleration we solve (1) for α:

\frac{\omega^{2}-\omega_{0}^{2}}{2\Delta\theta}=\alpha

Because the sphere stops the final angular velocity is zero, it's important all quantities in the SI so 2.40 rev/s = 15.1 rad/s and 18.2 rev = 114.3 rad, then:

\alpha=-\frac{-(15.1)^{2}}{2(114.3)}=1.00\frac{rad}{s^{2}}

The negative sign indicates the sphere is slowing down as we expected.

Now with the angular acceleration we can use Newton's second law:

\sum\overrightarrow{\tau}=I\overrightarrow{\alpha} (2)

with ∑τ the net torque and I the moment of inertia of the sphere, for a sphere that rotates about an axle through its center its moment of inertia is:

I = \frac{2MR^{2}}{5}

With M the mass of the sphere an R its radius, then:

I = \frac{2(1.85)(\frac{0.45}{2})^{2}}{5}=0.037 kg*m^2

Then (2) is:

\sum\overrightarrow{\tau}=0.037(-1.00)=0.037 Nm

7 0
2 years ago
Read 2 more answers
The headlights of a car emit light of wavelength 400 nm and are separated by 1.2 m. The headlights are viewed by an observer who
densk [106]

Answer:

The most correct option is;

B. 10 km

Explanation:

L = \frac{y \times d}{1.22 \times  \lambda} = \frac{1.2 \times 0.004}{1.22 \times  400 \times 10^{-9}} = 9836.066 \ km

Where:

y = Distance between the two headlights

d = Aperture of observers eye

λ = Wavelength of light

L = Distance between the observer and the headlight

Therefore, from the above solution, the distance between the observer and the headlights is 9386.066 km which is approximately 10 km.

Also we have

sinθ = y/L = 1.22 (λ/d)  

= 1.22 \times \frac{400 \times 10^{-9}}{0.004}

sinθ = 1.22×10⁻⁴ rad

6 0
2 years ago
Read 2 more answers
You throw a baseball (mass 0.145 kg) vertically upward. It leaves your hand moving at 12.0 m/s. Air resistance can be neglected.
Andru [333]

Answer:

The ball will have an upward velocity of 6 m/s at a height of 5.51 m.

Explanation:

Hi there!

The equations of height and velocity of the ball are the following:

y = y0 + v0 · t + 1/2 · g · t²

v = v0 + g · t

Where:

y = height at time t.

y0 = initial height.

v0 = initial velocity.

t = time.

g = acceleration due to gravity (-9.81 m/s² considering the upward direction as positive).

v = velocity of the ball at time t.

Placing the origin at the throwing point, y0 = 0.

Let´s use the equation of velocity to obtain the time at which the velocity is 12.0 m/s / 2 = 6.00 m/s.

v = v0 + g · t

6.00 m/s = 12.0 m/s -9.81 m/s² · t

(6.00 - 12.0)m/s / -9.81 m/s² = t

t = 0.612 s

Now, let´s calculate the height of the baseball at that time:

y = y0 + v0 · t + 1/2 · g · t²     (y0 = 0)

y = 12.0 m/s · 0.612 s - 1/2 · 9.81 m/s² · (0.612 s)²

y = 5.51 m

The ball will have an upward velocity of 6 m/s at a height of 5.51 m.

Have a nice day!

4 0
2 years ago
Other questions:
  • an ice skater is moving at a speed of 2 mi/hr when she slams into a wall 0.05 hours later. what is her acceleration?
    10·2 answers
  • The Pickering nuclear power plant has a power rating of 3100 MW.
    11·1 answer
  • A hollow cylinder of mass 2.00 kg, inner radius 0.100 m, and outer radius 0.200 m is free to rotate without friction around a ho
    7·1 answer
  • Suppose that you lift four boxes individually, each at a constant velocity. The boxes have weights of 3.0 N, 4.0 N, 6.0 N, and 2
    10·1 answer
  • A 10. g cube of copper at a temperature T1 is placed in an insulated cup containing 10. g of water at a temperature T2. If T1 &g
    12·1 answer
  • The Vehicle Assembly Building at the Kennedy Space Center in Florida has a volume of 3,666,500 m3. Convert this volume to liters
    13·1 answer
  • Mo is on a baseball team and hears that a ball thrown at a 45 degree angle from the ground will travel the furthest distance. Ho
    13·1 answer
  • A box is sliding with a speed of 4.50 m/s on a horizontal surface when, at point P, it encounters a rough section. The coefficie
    7·2 answers
  • An object with a mass m slides down a rough 37° inclined plane where the coefficient of kinetic friction is 0.20. If the plane i
    14·1 answer
  • A 60.0-kg skater begins a spin with an angular speed of 6.0 rad/s. By changing the position of her arms, the skater decreases he
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!