A box in a certain supply room contains four 40w, five 60w, and six 75w light-bulbs. suppose that three bulbs are randomly selec
ted. a.what is the probability that exactly two of the selected bulbs are rated 75w?
b.what is the probability that all three of the selected bulbs have the same rating?
c.what is the probability that one bulb of each type is selected?
d.suppose, now, that bulbs are to be selected one by one until a 75w bulb is found. what is the probability that it is necessary to examine at least six bulbs?
Situation satisfies the criteria for the use of hypergeometric distribution. Since no replacement is made, binomial distribution is not applicable (probability does not remain constant).
A=number of target wattage bulbs B=number of non-targeted wattage bulbs a=number of target wattage bulbs selected b=number of non-targeted wattage bulbs selected
P(a,b)=C(A,a)*C(B,b)/C(A+B,a+b) where C(n,x)=combination of x items chosen from n=n!/(x!(n-x)!)
For all following problems, A+B=4+5+6=15 a+b=3 (selected)
(b) target wattage = each of the three Probability = sum of probabilities of choosing 3 40,60,75-watt bulbs P(3x40W)+P(3x60W)+P(3x75W) Case (A,B,a,b) 3x40W (4,11,3,0) 3x60W (5,10,3,0) 3x75W(6,9,3,0)
Follow the directions "Complete the steps to write the equation of direct variation. Start with the equation of direct variation y = kx. Substitute in the given values for x and y to get . Solve for k to get . Write the direct variation equation with the value found for k."
The average weight in ounce for each piece of chocolate is 0.03.
Step-by-step explanation:
The heart-shaped box containing the chocolates has the weight of 2 pounds
The box contains 68 pieces of chocolates.To find the weight of each piece of chocolate, you divide the weight of the box with the number of chocolate pieces in the box.
This will be 2/68 = 0.0294117647
To the nearest hundredth you check the thousandths value and round off