We have to write an equation that uses this info so we can find the cost to ship that package. However, the package weight is given to us in grams and we need it in ounces. So first thing we are going to do is convert that 224 g to ounces. Use the fact that 1 g = .035274 ounces to convert.
. Do the multiplication and cancel out the label of grams and we have 7.901376 ounces. Ok. We know that it costs .57 to mail the package for the first ounce. We have almost 8 ounces. So no matter what, we are paying .57. For each additional ounce we are paying .32. The number of .32's we have to spend depends upon how much the package goes over the first ounce. For the first ounce we pay .57, then for the remaining 6.901376 ounces we pay .32 per ounce. Our equation looks like this: C(x) = .32(6.901376) + .57 and we need to solve for the cost, C(x). Doing the multiplication we find that it would cost $2.78 to ship that package.
B, the bottom of the figure contains points E, F, and H
Answer:
13 (c)
Step-by-step explanation:
Graph the equation 7000(1-0.19)^x and then the inequality y<500, the point of intersection should be 12.524, so the answer will be rounded up to 13 i think
Answer:
C
Step-by-step explanation:
To get the approximate number of pages in the chapters, what we need to do is to substitute for the value of x in the line of best fit equation.
Thus, we have;
y = 15.261(8) + 8.83 = 122.088 + 8.83 = 130.918
This is approximately equal to 131
Answer: The first equation is an equation of a parabola. The second equation is an equation of a line.
Explanation:
The first equation is,

In this equation the degree of y is 1 and the degree of x is 2. The degree of both variables are not same. Since the coefficients of y and higher degree of x is positive, therefore it is a graph of an upward parabola.
The second equation is,

In this equation the degree of x is 1 and the degree of y is 1. The degree of both variables are same. Since both variables have same degree which is 1, therefore it is linear equation and it forms a line.
Therefore, the first equation is an equation of a parabola. The second equation is an equation of a line.