This is a true statement if it is density you are looking for... Density problem.....
Density is the ratio of the mass of an object to its volume.
D = m / V
D = 104g / 14.3 cm³ = 7.27 g/cm³ .............. to three significant digits
The conventions for the units of density is that grams per cubic centimeter (g/cm³) are usually used for solids, but will work for anything. Grams per milliliter (g/mL) are usually used for liquids and grams per liter (g/L) are for gases. Therefore, by convention, the units for tin (a solid) should be in grams per cubic centimeter.
Since 1 mL is equivalent to 1 cm³, then the density could be expressed as 7.27 g/mL.
The accepted value for the density of tin is 7.31 g/cm³
Answer:
1.61 × 10⁶ kJ
Explanation:
The human burns energy so as to be healthy.
The amount of energy burnt per day by an adult human is 2 × 20³ kcal per day. Since there is 24 hours in a day, the amount of energy burnt per hour is 2 × 20³ × 24 = 48 × 20³ kcal per hour.
The conversion rate of kcal to kJ is 1 kcal = 4.184 kJ. Therefore converting the kcal per hour to kJ per hour gives:
48 × 20³ × 4.184 = 200.882 × 20³ kJ = 1.61 × 10⁶ kJ
Elements are ionized because they aspire to be stable. The most stable form are the ones with full octet of electrons, the noble gases which consist of the last column in the periodic table. The rest of the elements either accept or readily donate electrons to conform to the electronic configuration that is the same with the nearest noble gas.
1. Potassium's nearest noble gas is Ar which is one electron fewer. So, when ionized, it donates 1 electron. Hence, K⁺.
2. The nearest noble gas for fluorine is Neon which is 1 electron more. Hence, it has to accept one more electron. Hence, F⁻.
The question is incomplete, here is the complete question:
A student sets up the following equation to convert a measurement. (The stands for a number the student is going to calculate.) Fill in the missing part of this equation.

<u>Answer:</u> The measurement after converting is 
<u>Explanation:</u>
We are given:
A quantity having value 
To convert this into
, we need to use the conversion factors:
1 kPa = 1000 Pa

Converting the quantity into
, we get:

Hence, the measurement after converting is 
<span>Avogadro's number
represents the number of units in one mole of any substance. This has the value
of 6.022 x 10^23 units / mole. This number can be used to convert the number of
atoms or molecules into number of moles. We do as follows:
2.11x 10^24 atoms ( 1 mol / 6.022x10^23 atoms ) ( 32.06 g / 1 mol ) = 112.33 g sulfur
Hope this answers the question. </span>