answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Basile [38]
2 years ago
6

There are ________ hydrogen atoms in 25 molecules of c4h4s2.

Chemistry
2 answers:
coldgirl [10]2 years ago
5 0

Answer: 100.


Explanation:


1) The subscripts to the right of each element (symbol) in the chemical formula tells the number of atoms of that element present in one unit formula.


2) The unit formula of C₄H₄S₂ is equal to 1 molecule.


3) Therefore, there are 4 carbon atoms, 4 hydrogen atoms and 2 sulfur atoms in each molecule of C₄H₄S₂.


4) Then, you just have to multiply the corresponding subscript of the element times the number of molecules (25 in this case) to find the number of atoms of that kind.


5) These are the calculations for each element in the molecule C₄H₄S₂.


i) C: 4 × 25 = 100

ii) H: 4 × 25 = 100

iii) S: 2 × 25 = 50.


6) The question is about H only, so the answer is that there are 100 hydrogen atoms in 25 molecules of C₄H₄S₂.

Alexxx [7]2 years ago
5 0
4 hydrogen atoms

please thank me
You might be interested in
A 45 mL sample of nitrogen gas is cooled from 135ºC to 15C in a container that can contract or expand at constant pressure. Wha
Vanyuwa [196]

Answer:

V₂ =31.8 mL

Explanation:

Given data:

Initial  volume of gas = 45 mL

Initial temperature = 135°C (135+273 =408 K)

Final temperature = 15°C (15+273 =288 K)

Final volume of gas = ?

Solution:

The given problem will be solve through the Charles Law.

According to this law, The volume of given amount of a gas is directly proportional to its temperature at constant number of moles and pressure.

Mathematical expression:

V₁/T₁ = V₂/T₂

V₁ = Initial volume

T₁ = Initial temperature

V₂ = Final volume  

T₂ = Final temperature

Now we will put the values in formula.

V₁/T₁ = V₂/T₂

V₂ = V₁T₂/T₁  

V₂ = 45 mL × 288 K / 408 k

V₂ = 12960 mL.K / 408 K

V₂ =31.8 mL

8 0
2 years ago
A 100.0mL bubble of hot gases at 225 C and 1.80 atm escapes from an active volcano, what is the new volume of the bubble outside
Inessa05 [86]
<h3>Answer:</h3>

112.08 mL

<h3>Explanation:</h3>

From the question we are given;

  • Initial volume, V1 = 100.0 mL
  • Initial temperature, T1 = 225°C, but K = °C + 273.15

thus, T1 = 498.15 K

  • Initial pressure, P1 = 1.80 atm
  • Final temperature , T2 = -25°C

                                     = 248.15 K

  • Final pressure, P2 = 0.80 atm

We are required to calculate the new volume of the gases;

  • According to the combined gas law equation;

\frac{P1V1}{T1}=\frac{P2V2}{T2}

Rearranging the formula;

V2=\frac{P1V1T2}{T1P2}

Therefore;

V2=\frac{(1.80atm)(100mL)(248.15K)}{(498.15K)(0.80atm)}

V2=112.08mL

Therefore, the new volume of the gas is 112.08 mL

8 0
2 years ago
Hydrogen chloride gas can be prepared by the following reaction: 2NaCl(s) + H2SO4(aq) → 2HCl(g) + Na2SO4(s) How many grams of HC
SVETLANKA909090 [29]

Answer:

The correct answer is is option B

b. 93.3 g

Explanation:

SEE COMPLETE QUESTION BELOW

Hydrogen chloride gas can be prepared by the following reaction: 2NaCl(s) + H2SO4(aq) → 2HCl(g) + Na2SO4(s)

How many grams of HCl can be prepared from 2.00 mol H2SO4 and 2.56 mol NaCl?

a. 7.30 g

b. 93.3 g

c. 146 g

d. 150 g

e. 196 g

CHECK THE ATTACHMENT FOR STEP BY STEP EXPLANATION

7 0
2 years ago
The equation for the pH of a substance is pH = –log[H+], where H+ is the concentration of hydrogen ions. A basic solution has a
Rzqust [24]
For the basic solution:
11.2 = -log[H+]
[H+] = 6.31 x 10⁻¹²
For the acidic solution:
2.4 = -log[H+]
[H+] = 3.98 x 10⁻³
The difference:
3.98 x 10⁻³ - 6.31 x 10⁻¹²
≈ 4.0 x 10⁻³
The answer is B
3 0
2 years ago
Read 2 more answers
A sample contains 2.2 g of the radioisotope niobium-91 and 15.4 g of its daughter isotope, zirconium-91. how many half-lives hav
dybincka [34]

Answer: 3

Explanation: This is a radioactive decay and all the radioactive process follows first order kinetics.

Equation for the reaction of decay of _{19}^{40}\textrm{K} radioisotope follows:

Moles of zirconium=\frac{\text{Given mass}}{\text{Molar mass}}=\frac{15.4}{91}=0.17moles  

Moles of niobium=\frac{\text{Given mass}}{\text{Molar mass}}=\frac{2.2}{91}=0.024moles  

_{41}^{91}\textrm{Nb}\rightarrow _{40}^{91}\textrm{Zr}+_{+1}^0e

By the stoichiometry of above reaction,

1 mole of _{40}^{91}\textrm{Zr} is produced by 1 mole _{41}^{91}\textrm{Nb}

So, 0.17 moles of _{40}^{91}\textrm{Zr} will be produced by = \frac{1}{1}\times 0.17=0.17\text{ moles of }_{40}^{91}\textrm{Nb}

Amount of _{82}^{212}\textrm{K}

decomposed will be = 0.17 moles

Initial amount of _{40}^{91}\textrm{Nb}  will be = Amount decomposed + Amount left = (0.17 + 0.024)moles =0.194 moles

a=\frac{a_o}{2^n}

where,

a = amount of reactant left after n-half lives = 0.024

a_o = Initial amount of the reactant = 0.194

n = number of half lives= ?

Putting values in above equation, we get:

0.024=\frac{0.194}{2^n}

n=3

Therefore, 3 half lives have passed.

3 0
2 years ago
Read 2 more answers
Other questions:
  • How many grams of Cl are in 38.0 g of each sample of chlorofluorocarbons (CFCs)?
    15·1 answer
  • Which sentence correctly describes an aspect of the Antarctic treaty system
    7·2 answers
  • Calculate the heat change in calories for melting 65 g of ice at 0 ∘c.
    8·1 answer
  • A 100 mL reaction vessel initially contains 2.60×10^-2 moles of NO and 1.30×10^-2 moles of H2. At equilibrium the concentration
    13·1 answer
  • Calculate the heat of reaction, ΔH°rxn, for overall reaction for the production of methane, CH4.
    10·1 answer
  • 1. Which class of compounds contains at least one element from Group 17 of the Periodic Table ? A) aldehyde B ) amine C) ester D
    10·1 answer
  • Which of the following solutions is a buffer?A) A solution made by mixing 100 mL of 0.100 M HClO and 50 mL of 0.100 M HCl.B) A s
    8·1 answer
  • En un depósito hay 800 litros de agua. Por la parte superior un tubo vierte en el depósito 25 litros por minuto, y por la parte
    8·1 answer
  • Calculate the internal energy of 2 moles of argon gas (assuming ideal behavior) at 298 K. Suggest two ways to increase its inter
    13·1 answer
  • If two gases react, pumping more gas into the reaction container will _____ the rate of the reaction.
    12·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!