Answer:

Explanation:
we know angular velocity in terms of moment of inertia and angular speed
ω .... (1)
moment of inertia of rod rotating about its center of length b
........ .(2)
using v = ωr
where w is angular velocity
and r is radius of rod which is equal to b
so we get 2v = ωb
ω = 2v/b ................. (3)
here velocity is two time because two opposite ends are moving opposite with a velocity v so net velocity will be 2v
put second and third equation in ist equation
×
so final answer will be 
Answer:
See the explanation below
Explanation:
To better understand this problem, a cylinder sketch is attached before and after the cut, we see that after the cut, the shape of this resembles that of a right triangle.
We can find, the centroid in the xy plane, knowing that the centroid for a triangle is located a third of its base.
In the z axis there is no displacement of the centroid.
Answer
given,
mass of the ball = 3 kg
swing in vertical circle with radius = 2 m
work done by the gravity = ?
work done by the tension = ?
Work done by the gravity = - m g Δh
Δ h = 2 + 2 = 4 m
Work done by the gravity =
= -117.6 J
work done by gravity is equal to -117.6 J
Work done by tension will be equal to zero.
Zero because tension is always perpendicular to velocity
work done by tension is equal to 0 J
Answer:
Force applied to smaller cross section is
= 82.63 N
Explanation:
As we know

where
signifies the weight of the two chair in a hydraulic-lift system
And
signifies the area of the two respective chairs in a hydraulic-lift system
Given -
N
Square centimeter
Square centimeter
Substituting the given values in above equation, we get -

Force applied to smaller cross section is
= 82.63 N
Answer:

Explanation:
We can use the following SUVAT equation to solve the problem:

where
v = 0 is the final velocity of the car
u = 24 m/s is the initial velocity
a is the acceleration
d = 196 m is the displacement of the car before coming to a stop
Solving the equation for a, we find the acceleration:
