Answer: The rate of disappearance of
is 
Explanation:
The given chemical reaction is:

The rate of the reaction for disappearance of
is given as:
![\text{Rate of disappearance of }NO_2=-\frac{\Delta [NO_2]}{\Delta t}](https://tex.z-dn.net/?f=%5Ctext%7BRate%20of%20disappearance%20of%20%7DNO_2%3D-%5Cfrac%7B%5CDelta%20%5BNO_2%5D%7D%7B%5CDelta%20t%7D)
Or,

where,
= final concentration of
= 0.00650 M
= initial concentration of
= 0.0100 M
= final time = 100 minutes
= initial time = 0 minutes
Putting values in above equation, we get:

Hence, the rate of disappearance of
is 
Answer:
The following subsections explain the explanation according to the particular circumstance.
Explanation:
- The boiling point seems to be the temperature beyond which the working fluid as well as the boiling phase would be at a predetermined pressure or voltage at equilibrium among one another and.
- The vapor or boiling temperature of 1,1 difluoroethane seems to be -25oC at 1 atm, although as a gas it can remain at a higher temperature around -24oC.
How does that mean that the number is a little too late and you don’t have a phone number so you please look at it
Hi
Please find attached file with answers.
Hope it help!
Answer:
43.96
Explanation:
Graham's law was applied and the rates of effusion of nitrogen and the unknown gas were compared as shown in the image. The unknown gas is heavier than hydrigen hence it effuses slower than hydrogen as anticipated by Graham's law.