<span>Displaced volume :
</span>Final volume - <span>Initial volume
</span>13.45 mL - 12.00 mL => 1.45 mL
Mass = 4.50 g
Therefore:
density = mass / volume
D = 4.50 / 1.45
<span>D = 3.103 g/mL </span>
Answer:
119.9 pound
Explanation:
Given data:
Density of gasoline = 0.749 g/mL
Volume of gasoline = 19.2 gal (19.2× 37854 =72679.9 mL)
Mass = ?
Solution:
Density:
Density is equal to the mass of substance divided by its volume.
Units:
SI unit of density is Kg/m3.
Other units are given below,
g/cm3, g/mL , kg/L
Formula:
D=m/v
D= density
m=mass
V=volume
Now we will put the values in formula:
d = m/v
0.749 g/mL = m/ 72679.9 mL
m = 54437.25 g
gram to gallon:
54437.25/ 454
m = 119.9 pound
Answer:
= 152.40 g
Explanation:
The equation for the reaction is;
Cu(s) + AgNO3 → Ag(s) + Cu(NO3)2
Mass of silver nitrate = 320.0 g × 0.75
= 240.0 g
Molar mass of silver nitrate = 169.87 g/mol
Therefore;
Moles of silver nitrate = 240.0 g/169.87 g/mol
= 1.413 moles
Mole ratio of Silver nitrate to silver metal = 1 : 1
Therefore, moles of silver metal = 1.413 moles
Hence;
Mass of silver metal = 1.413 moles × 107.868 g/mol
<u>= 152.40 g</u>
1)we need a balanced equation: CuSO₄ + Zn ---> ZnSO₄ + Cu
2) we need to convert the grams of CuSO₄ to moles using the molar mass.
molar mass CuSO₄= 63.5 + 32.0 + (4 x 16.0)= 160 g/mol

3) convert moles of CuSO₄ to moles of Cu

4) convert moles of Cu to grams using it's molar mass.
molar mass Cu= 63.5 g/mol

I did it step-by-step as the explanation but you can do all of this in one step.
Answer:

Explanation:
Hello!
In this case, given the initial conditions, we first use the 10-% quality to compute the initial entropy:

Now the entropy at the final state given the new 40-% quality:

Next step is to compute the mass of steam given the specific volume of steam at 175 kPa and the 10% quality:

Then, we can write the entropy balance:

Whereas sfg stands for the entropy of the leaving steam to hold the pressure at 150 kPa and must be greater than 0; thus we plug in:
Which is such minimum entropy change of the heat-supplying source.
Best regards!