Answer:
[HClO₄] = 11.7M
Explanation:
First of all we need to know, that a weight percent represents, the mass of solute in 100 g of solution.
Let's convert the mass to moles → 70.5 g . 1mol/100.45 g = 0.702 moles
Now we can apply the density to calculate the volume.
Density always refers to solution → Solution density = Solution mass / Solution volume
1.67 g/mL = 100 g / Solution volume
Solution volume = 100 g / 1.67 g/mL → 59.8 mL
To determine molarity (mol/L) we must convert the mL to L
59.8 mL . 1L/1000mL = 0.0598 L
Molarity → Moles of solute in 1L of solution → 0.702 mol / 0.0598 L = 11.7M
Answer:
c
Explanation:
the cells grow more than the tissue
Answer:
it would definitely be wienerballs1977
Explanation:
fossil fuels x (3x1017kJ/yr) equals out to be wienerballs1977.
thx for the challenge !
The correct answer is option d, that is, atoms of the element.
As the atoms are neither destroyed nor created in a chemical reaction, the sum of the mass of the products in a reaction must be equivalent to the sum of the mass of the reactants.
The chemical reactions must be balanced, they must exhibit a similar number of atoms of each element on both the sides of the equation. As a consequence, the mass of the reactants must be equivalent to the mass of the products of the reaction.
It is less
effective to wash an insoluble precipitate with 15 ml of water once than it is
to wash the precipitate with 3 ml of water 5 times because commonly, when you
clean an <span>indissoluble
precipitate with water, the water will not be completely saturated with
contaminates. Therefore, the absorption of the contaminates would lower with
each wash, since if you only washed it once with a bigger amount or volume of
water, it’d become less contaminated with the wash water but it wouldn’t get
rinsed numerous times.</span>