Answer:
Suspension
Explanation:
This mixture is a simple suspension.
A suspension is a mixture of small insoluble particles of a solid in a liquid or gas. Here, it is insoluble particles in liquid.
- Suspensions are settle on standing this is why they have to be mixed again.
- The particles do not pass through ordinary filter paper.
- They are usually cloudy and have an opaque color.
- The marinade is simply a suspension.
- It is not a solution because they do not settle on standing.
- Also, colloids do not settle on standing.
Explanation:
The given reaction equation will be as follows.

Now, number of atoms on reactant side are as follows.
Number of atoms on product side are as follows.
Therefore, this equation is balanced since atoms on both reactant and product sides are equal.
Thus, we can conclude that there is one sulfur atom in the products.
Answer:
<h3>

</h3>
Explanation:
First balance the chemical equation:
⇄ 
two components are solid so these two will not exert any kind of pressure in the container so at equilibrium only CO2 will apply pressure on the container
Therefore only partial pressure of CO2 will be taken for the calculation of equilibrium pressure constant i.e. Kp
![K_p=[CO_2]](https://tex.z-dn.net/?f=K_p%3D%5BCO_2%5D)
![[CO_2]=p](https://tex.z-dn.net/?f=%5BCO_2%5D%3Dp)



Answer:
The disadvantages of each of the given model of electron configuration have been mentioned below:
1). Dot Structures - They take up excess space as they do not display the electron distribution in orbitals.
2). Arrow and line diagrams make the counting of electrons and take up too much space.
3). Written Configurations do not display the electron distribution in orbitals and help in lose counting of electrons easily.
Answer:
C. 0.04 moles per cubic decimeter.
Explanation:
The molar mass of the Iodine is 253.809 grams per mole and a cubic decimeter equals 1000 cubic centimeters. The concentration of Iodine (
), measured in moles per cubic decimeter, can be determined by the following formula:
(1)
Where:
- Mass of iodine, measured in grams.
- Molar mass of iodine, measured in grams per mol.
- Volume of solution, measured in cubic decimeters.
If we know that
,
and
, then the concentration of iodine in a solution is:


Hence, the correct answer is C.