Answer:
Explanation:What is the root-mean-square velocity (vrms) of the center of mass of one of the molecules?
During the fall, the potential energy stored in the ball is converted into kinetic energy.
Thus,
PE = KE before hitting the ground
= 1/2 • mv^2
= 1/2 • 1 • 12^2
= 72J
Answer:

Explanation:
We know that speed is given by dividing distance by time or multiplying length and frequency. The speed of the father will be given by Lf where L is the length of the father’s leg ad f is the frequency.
We know that frequency of simple pendulum follows that 
Now, the speed of the father will be
while for the child the speed will be 
The ratio of the father’s speed to the child’s speed will be

Answer: B
Explanation: I said B because if you pull something back what is going to be more of a force pulling back or letting it go for a rubier band yes it will have more force if you let it go
Answer:
a) W = 643.5 J, b) W = -427.4 J
Explanation:
a) Work is defined by
W = F. x = F x cos θ
in this case they ask us for the work done by the external force F = 165 N parallel to the ramp, therefore the angle between this force and the displacement is zero
W = F x
let's calculate
W = 165 3.9
W = 643.5 J
b) the work of the gravitational force, which is the weight of the body, in ramp problems the coordinate system is one axis parallel to the plane and the other perpendicular, let's use trigonometry to decompose the weight in these two axes
sin θ = Wₓ / W
cos θ = Wy / W
Wₓ = W sinθ = mg sin θ
Wy = W cos θ
the work carried out by each of these components is even Wₓ, it has to be antiparallel to the displacement, so the angle is zero
W = Wₓ x cos 180
W = - mg sin 34 x
let's calculate
W = -20 9.8 sin 34 3.9
W = -427.4 J
The work done by the component perpendicular to the plane is ero because the angle between the displacement and the weight component is 90º, so the cosine is zero.