Answer:
Rank the following chemical species from lowest absolute entropy (So) (1) to highest absolute entropy (5) at 298 K?
a. Al (s)
b. H2O (l)
c. HCN (g)
d. CH3COOH (l)
e. C2H6 (g)
Explanation:
Entropy is the measure of the degree of disorderness.
In solids, the entropy is very less compared to liquids and gases.
The entropy order is:
solids<liquids<gases
Among the given substances, water in liquid form has a strong intermolecular H-bond.
So, it has also less entropy.
Next acetic acid.
Between the gases, HCN, and ethane, ethane has more entropy due to very weak intermolecular interactions.
HCN has slight H-bonding in IT.
Hence, the entropy order is:
Al(s) < CH3COOH (l) <H2O(l) < HCN(g) < C2H6(g)
The First Ionization energy of Nitrogen is greater (Not smaller)than that of Phosphorous. This is because going down the group (N and P are in same group) the number of shells increases, the distance of valence electrons from Nucleus increases and hence due to less interaction between nucleus and valence electrons it becomes easy to knock out the electron.
<span>The second ionization energy of Na is larger than that of Mg because after first loss of electron Na has gained Noble Gas Configuration (Stable Configuration) and now requires greater energy to loose both second electron and Noble Gas Configuration. While Mg after second ionization attains Noble Gas Configuration hence it prices less energy.</span>
Hmm. I'm not 100% sure but. I'm pretty sure it's A because the heated water is below and there's a hotter temp. Also because it's copper, heat will move more quickly. I'm not 100% sure, are there notes you can check?
Answer:
[KCl] = 1.33 M
Explanation:
Molarity is mol /L
Mol of solute in 1 L of solution
Volume of solution is 750 mL
750 mL / 1000 = 0.750 L
1 mol / 0.750L = M → 1.33
Answer:
[HClO₄] = 11.7M
Explanation:
First of all we need to know, that a weight percent represents, the mass of solute in 100 g of solution.
Let's convert the mass to moles → 70.5 g . 1mol/100.45 g = 0.702 moles
Now we can apply the density to calculate the volume.
Density always refers to solution → Solution density = Solution mass / Solution volume
1.67 g/mL = 100 g / Solution volume
Solution volume = 100 g / 1.67 g/mL → 59.8 mL
To determine molarity (mol/L) we must convert the mL to L
59.8 mL . 1L/1000mL = 0.0598 L
Molarity → Moles of solute in 1L of solution → 0.702 mol / 0.0598 L = 11.7M