answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Mumz [18]
1 year ago
14

If points a and b are connected by a wire with negligible resistance, find the magnitude of the current in the 12.0 v battery.

Physics
1 answer:
Marizza181 [45]1 year ago
7 0
V = I * R
Where V is the voltage, I is the current and R is the resistance. Using Ohm's law, you require resistance to find the current through the wire. Technically, if the wire has a resistance of 0, you will get infinite current. But this isn't possible. Maybe the negligible resistance refers to the battery's internal resistance - not the wire's resistance. 
You might be interested in
Describe each class of lever and explain to characteristics of each
Nataly [62]

-- Class I lever

The fulcrum is between the effort and the load.

The Mechanical Advantage can be anything, more or less than 1 .

Example:  a see-saw

-- Class II lever

The load is between the fulcrum and the effort.

The Mechanical Advantage is always greater than 1 .

Example:  a nut-cracker, a garlic press

-- Class III lever

The effort is between the fulcrum and the load.

The Mechanical Advantage is always less than 1 .

I can't think of an example right now.

8 0
1 year ago
Read 2 more answers
A hockey puck of mass m traveling along the x axis at 4.5 m/s hits another identical hockey puck at rest. If after the collision
TEA [102]

Answer:

D) No, since kinetic energy is not conserved.

Explanation:

Since momentum is always conserved in all collision

so in Y direction we can say

0 = m(3.5 sin30) - mv_y

v_y = 1.75 m/s

Now similarly in X direction we will have

m(4.5) = m(3.5 cos30 ) + mv_x

v_x = 1.47 m/s

now final kinetic energy of both puck after collision is given as

KE_f = \frac{1}{2}m(3.5^2) + \frac{1}{2}m(1.75^2 + 1.47^2)

KE_f = 8.73 m

initial kinetic energy of both pucks is given as

KE_i = \frac{1}{2}m(4.5^2) + 0

KE_i = 10.125 m

since KE is decreased here so it must be inelastic collision

D) No, since kinetic energy is not conserved.

5 0
2 years ago
For a machine with 35-cm -diameter wheels, what rotational frequency (in rpm) do the wheels need to pitch a 85 mph fastball?
Inessa05 [86]

Answer:

The rotational frequency must be 2073.56 rpm

Explanation:

Notice that we need to obtain a rotational frequency in "rpm" (revolutions per minute), so we better start by converting all the given information into the appropriate units:

The magnitude of the velocity for the pitch is given in miles per hour, while the diameter of the machine's wheels is given in cm. Let's reduce all units of length into meters(using the metric system), and the units of time into minutes.

Conversion of the 85 mph  speed into meters per minute:

Recall that 1 mile equals 1609.34 meters, and that 1 hour equals 60 minutes, so we write:

85\,\frac{miles}{hour} = 85\,\frac{1609.34\,m}{60\,min} =2279.898\,\frac{m}{min}

which can be rounded to approximately 2280 m/min.

We also convert the 35 cm diameter into meters:

diameter = 0.35 m

Now we use the equation that relates angular velocity (w) and the radius (R) of the circular movement, with tangential velocity (v_t), in order to obtain the angular velocity of the wheel:

v_t=w*R\\w=\frac{v_t}{R}

but recall that this angular velocity is given in radians per unit of time. So first find the radius of the wheel (half its diameter). R = 0.175 m

So we have:

w=\frac{2280}{0.175}\frac{radians}{min} \\w=13028.57\,\frac{radians}{min}

And now, recalling that 2\pi radians equal one revolution, we convert the angular velocity ot revolutions per minute by dividing the "w" we found by 2\pi :

rotational frequency = \frac{13028.57}{2\pi} \frac{rev}{min} = 2073.56 \frac{rev}{min}

6 0
2 years ago
Most of the nutrients in the rainforest ecosystem are in the _____.
joja [24]
<span>The answer should be the vegitation. </span>
4 0
1 year ago
Read 2 more answers
A roller coaster car drops a maximum vertical distance of 35.4 m. Determine the maximum speed of the car at the bottom of that d
marissa [1.9K]

Answer:

The maximum speed of the car at the bottom of that drop is 26.34 m/s.

Explanation:

Given that,

The maximum vertical distance covered by the roller coaster, h = 35.4 m

We need to find the maximum speed of the car at the bottom of that drop. It is a case of conservation of energy. The energy at bottom is equal to the energy at top such that :

mgh=\dfrac{1}{2}mv^2

v=\sqrt{2gh}

v=\sqrt{2\times 9.8\times 35.4}

v = 26.34 m/s

So, the maximum speed of the car at the bottom of that drop is 26.34 m/s. Hence, this is the required solution.

8 0
1 year ago
Other questions:
  • The mass of the Sun is 2 × 1030 kg, and the mass of Saturn is 5.68 × 1026 kg. The distance between Saturn and the Sun is 9.58 AU
    12·2 answers
  • A beaker contain 200mL of water<br> What is its volume in cm3 and m3
    5·2 answers
  • On an ice skating rink, a girl of mass 50 kg stands stationary, face to face with a boy of mass 80 kg. The children push off of
    15·2 answers
  • You are driving to the grocery store at 20 m/s. You are 110m from an intersection when the traffic light turns red. Assume that
    14·1 answer
  • the arm of a crane is 15.0 m long and makes an angle of 70.0 degrees with the horizontal. Assume that the maximum load for the c
    9·1 answer
  • A ladder placed up against a wall is sliding down. The distance between the top of the ladder and the foot of the wall is decrea
    6·1 answer
  • A hydraulic lift is designed to lift cars up to 2000 kg in mass.If the lift under the car is 1.0 m by 1.2m and the area of the i
    14·1 answer
  • A 3.50-meter length of wire with a cross-sectional area of 3.14 × 10-6 meter2 is at 20° Celsius. If the wire has a resistance of
    11·1 answer
  • Part A At t tt = 2.0 s s , what is the particle's position? Express your answer to two significant figures and include the appro
    15·1 answer
  • A paper in the journal Current Biology tells of some jellyfish-like animals that attack their prey by launching stinging cells i
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!