In this question we need to find the new volume of the gas. Since we have been given the pressure and temperature change, we can used to combined gas law equation.

the parameters for 1st instance are given on the left side and parameters for the second instance are given on the right side of the equation
(319 mmHg x 0.558 L)/ 115 K = (215 mmHg x V)/387 K
V = 2.79 L
As the pressure on the on a gas cofined above a liquid increases, the solubility of the gas will increase
this also happen when we lower the temperature
Answer:
<u>1. Net ionic equation:</u>
- Cl⁻(aq) + Ag⁺(aq) → AgCl(s)
<u />
<u>2. Volume of 1.0M AgNO₃</u>
Explanation:
1. Net ionic equation for the reaction of NaCl with AgNO₃.
i) Molecular equation:
It is important to show the phases:
- (aq) for ions in aqueous solution
- (s) for solid compounds or elements
- (g) for gaseous compounds or elements
- NaCl(aq) + AgNO₃(aq) → AgCl(s) + NaNO₃(aq)
ii) Dissociation reactions:
Determine the ions formed:
- NaCl(aq) → Na⁺(aq) + Cl⁻(aq)
- AgNO₃(aq) → Ag⁺(aq) + NO₃⁻(aq)
- NaNO₃(aq) → Na⁺(aq) + NO₃⁻(aq)
iii) Total ionic equation:
Substitute the aqueous compounds with the ions determined above:
- Na⁺(aq) + Cl⁻(aq) + Ag⁺(aq) + NO₃⁻(aq) → AgCl(s) + Na⁺(aq) + NO₃⁻(aq)
iv) Net ionic equation
Remove the spectator ions:
- Cl⁻(aq) + Ag⁺(aq) → AgCl(s) ← answer
2. How many mL of 1.0 M AgNO₃ will be required to precipitate 5.84 g of AgCl
i) Determine the number of moles of AgNO₃
The reaction is 1 to 1: 1 mole of AgNO₃ produces 1 mol of AgCl
The number of moles of AgCl is determined using the molar mass:
- number of moles = mass in grams / molar mass
- molar mass of AgCl = 143.32g/mol
- number of moles = 5.84g / (143.32g/mol) = 0.040748 mol
ii) Determine the volume of AgNO₃
- molarity = number of moles of solute / volume of solution in liters
- V = 0.040748mol / (1.0M) = 0.040748 liter
- V = 0.040748liter × 1,000ml / liter = 40.748 ml
Round to two significant figures: 41ml ← answer
An example.
water is H2O
2 hydrogen, 1 oxygen
so the number to the right means how much of what is on the left.
so it looks like 2, because C2, but look at the 3 at the beginning. that means
3 (c2h4)
so 6 carbons, 12 hydrogen
the ratio of c2 to h4 doesn't change it's always 1:2.
but the 3 at the front is a different number relating to how much you have