answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
puteri [66]
2 years ago
11

The frequency of a photon that has an energy of 3.7 × 10-18 j is ________ s-1.

Chemistry
2 answers:
inysia [295]2 years ago
7 0
As we know there is direct relation between Enerfy and Frequence, So,

                                              E  ∞  υ

To remove proportionality sign,

                                              E  =  h  υ     ----- (1)
Where,
            E  =  Energy

            h  =  Planck's Constant  =  6.626 × 10⁻³⁴ Kg m² s⁻¹

            υ  =  Frequency

Solving eq. 1 for υ,

                                              υ  =  E / h
Putting Values,

                               υ  =  3.7 × 10⁻¹⁸ Kg.m².s⁻² / 6.626 × 10⁻³⁴ Kg m² s⁻¹

                               υ  =  5.58 × 10¹⁵ s⁻¹
Jet001 [13]2 years ago
3 0

<u>Answer:</u> The frequency of the photon is 5.58\times 10^{15}s^{-1}

<u>Explanation:</u>

The relationship between energy and frequency is given by Planck's equation, which is:

E=h\nu

where,

h = Planck's constant = 6.626\times 10^{-32}Js

E = energy of the photon = 3.7\times 10^{-18}J

\nu = frequency of photon = ?

Putting values in above equation, we get:

3.7\times 10^{-18}J=6.626\times 10^{-34}Js\times \nu\\\\\nu=\frac{3.7\times 10^{-18}J}{6.626\times 10^{-34}Js}=5.58\times 10^{15}s^{-1}

Hence, the frequency of the photon is 5.58\times 10^{15}s^{-1}

You might be interested in
1. For which of these elements would the first ionization energy of the atom be higher than that of the diatomic molecule?
Lyrx [107]

Answer: Option (b) is the correct answer.

Explanation:

The energy necessary to remove an electron from a gaseous atom or ion is known as ionization energy.

This means that smaller is the size of an atom more amount of energy has to be supplied to it in order to remove the valence electron. This is because in small atom or element there will be strong force of attraction between the nucleus and electrons.

So, high amount of energy has to be supplied to remove the valence electrons.

As electronic configuration of helium is 1s^{2}. So, due to completely filled valence shell it is more stable in nature.

As a result, we need to provide very high amount of energy to remove an electron from a helium atom.

Thus, we can conclude that out of the given options helium element would the first ionization energy of the atom be higher than that of the diatomic molecule.

7 0
2 years ago
In an ionic bond:
inna [77]
Correct answer is 
<span>D. One atom accepts electrons from another.</span>
8 0
2 years ago
Read 2 more answers
The terms motif (fold) and domain describe levels of protein organization more complicated than primary or secondary structure.
posledela

Answer:

Each specific property of motif and domain is explained.

Explanation:

Domain;

  • May retain a 3D structure when separated from rest of the protein.          
  • Unit of tertiary structure because alpha helix and beta sheets are units of secondary structure.
  • Stable globular units like pyruvate kinase
  • May be distinct functional units in a protein

Motif;

  • Repetetive supersecondary structure because they contain cluster of secondary structure.
  • Beta Alpha Beta unit is an example of motif
  • Clusters of secondary structure

Both Motif and Domain;

  • Stabilized by hydrophobic interactions like hydrogen bonding stabilize the both.
  • Depends on primary structure like the arrangement of amino acid in polypeptide chain determine the secondary and tertiary structure of proteins.

8 0
2 years ago
analysis of a compound indicates that it contains 1.04 grams K 0.70 g Cr and 0.86 g O. Find its empirical formula
MrMuchimi
1.04gK*1molK/39.01g K= 0.0267 mol K
0.70gCr*1mol/52.0g Cr = <span>0.0135 mol Cr   
0.86 gO* 1 mol/16.0 g O = 0.0538 mol O
</span>0.0267 mol K/0.0135 = 2 mol K
0.0135 mol Cr  /0.0135= 1 mol Cr
 0.0538 mol O/0.035= 4 mol Cr
K2CrO4
6 0
2 years ago
Read 2 more answers
You have two 500.0 ml aqueous solutions. solution a is a solution of a metal nitrate that is 8.246% nitrogen by mass the ionic c
almond37 [142]

1) Answer is: the ionic compound in the solution b is K₂CrO₄ (potassium chromate).

Ionic compound in solution b has two potassiums (oxidation number +1), one chromium (oxidation number +6) and four oxygens. Oxidation number of oxygen is -2 and compound has neutral charge:

2 · (+1) + 6 + x · (-2) = 0.

x = 4; number of oxygen atoms.

2) Answer is: the ionic compound in solution a is AgNO₃ (silver nitrate).

ω(N) = 8.246% ÷ 100%.

ω(N) = 0.08246; mass percentage of nitrogen.

M(MNO₃) = M(N) ÷ ω(N).

M(MNO₃) = 14 g/mol ÷ 0.08246.

M(MNO₃) = 169.8 g/mol; molar mass of metal nitrate.

M(M) = M(MNO₃) - M(N) - 3 · M(O).

M(M) = 169.8 g/mol - 14 g/mol - 3 · 16 g/mol.

M(M) = 107.8 g/mol; atomic mass of metal, this metal is silver (Ag).

3) Balanced chemical reaction:  

2AgNO₃(aq) + K₂CrO₄(aq) → Ag₂CrO₄(s) + 2KNO₃(aq).

Ionic reaction:  

2Ag⁺(aq) + 2NO₃(aq) + 2K⁺(aq) + CrO₄²⁻(aq) → Ag₂CrO₄(s) + 2K⁺(aq) + 2NO₃⁻(aq).

Net ionic reaction: 2Ag⁺(aq) + CrO₄²⁻(aq) → Ag₂CrO₄(s).

Answer is: the blood-red precipitate is silver chromate (Ag₂CrO₄).

4) m(Ag₂CrO₄) = 331.8 g; mass of solid silver chromate.

n(Ag₂CrO₄) = m(Ag₂CrO₄) ÷ M(Ag₂CrO₄).

n(Ag₂CrO₄) = 331.8 g ÷ 331.8 g/mol.

n(Ag₂CrO₄) = 1 mol; amount of silver chromate.

From balanced chemical reaction: n(Ag₂CrO₄) : n(AgNO₃) = 1 : 2.

n(AgNO₃) = 2 · 1 mol.

n(AgNO₃) = 2 mol.

m(AgNO₃) = n(AgNO₃) · M(AgNO₃).

m(AgNO₃) = 2 mol · 169.8 g/mol.

m(AgNO₃) = 339.6 g; mass of silver nitrate.

m(AgNO₃) = m(K₂CrO₄).

m(K₂CrO₄) = 339.6 g; mass of potassium chromate.

n(K₂CrO₄) = m(K₂CrO₄) ÷ M(K₂CrO₄).

n(K₂CrO₄) = 339.6 g ÷ 194.2 g/mol.

n(K₂CrO₄) = 1.75 mol; amount of potassium chromate.

5) Chemical reaction of dissociation of silver nitrate in water:

AgNO₃(aq) → Ag⁺(aq) + NO₃⁻(aq).

V(solution a) = 500 mL ÷ 1000 mL/L.

V(solution a) = 0.5 L; volume of solution a.

c(AgNO₃) = n(AgNO₃) ÷ V(solution a).

c(AgNO₃) = 2 mol ÷ 0.5 L.

c(AgNO₃) = 4 mol/L = 4 M.

From dissociation of silver nitrate: c(AgNO₃) = c(Ag⁺) = c(NO₃⁻).

c(Ag⁺) = 4 M; the concentration of silver ions in the original solution a.

c(NO₃⁻) = 4 M; the concentration of silver ions in the original solution a.

6) Chemical reaction of dissociation of potssium chromate in water:

K₂CrO₄(aq) → 2K⁺(aq) + CrO₄²⁻(aq).

V(solution b) = 500 mL ÷ 1000 mL/L.

V(solution b) = 0.5 L; volume of solution b.

c(K₂CrO₄) = n(K₂CrO₄) ÷ V(solution b).

c(AgNO₃) = 1.75 mol ÷ 0.5 L.

c(AgNO₃) = 3.5 mol/L = 3.5 M.

From dissociation of silver nitrate: c(K₂CrO₄) = c/2(K⁺) = c(CrO₄²⁻).

c(K⁺) = 7 M; the concentration of potassium ions in the original solution b.

c(CrO₄²⁻) = 3.5 M; the concentration of silver ions in the original solution b.

7) V(final solution) = V(solution a) + V(solution b).

V(final solution) = 500.0 mL + 500.0 mL.

V(final solution) = 1000 mL ÷ 1000 mL/L.

V(final solution) = 1 L.

n(NO₃⁻) = 2 mol.

c(NO₃⁻) = n(NO₃⁻) ÷ V(final solution)

c(NO₃⁻) = 2 mol ÷ 1 L.

c(NO₃⁻) = 2 M; the concentration of nitrate anions in final solution.

8) in the solution b there were 3.5 mol of potassium cations, but one part of them reacts with 2 moles of nitrate anions:

K⁺(aq) + NO₃⁻(aq) → KNO₃(aq).

From chemical reaction: n(K⁺) : n(NO₃⁻) = 1 : 1.

Δn(K⁺) = 3.5 mol - 2 mol.

Δn(K⁺) = 1.5 mol; amount of potassium anions left in final solution.

c(K⁺) = Δn(K⁺) ÷ V(final solution).

c(K⁺) = 1.5 mol ÷ 1 L.

c(K⁺) = 1.5 M; the concentration of potassium cations in final solution.

4 0
2 years ago
Other questions:
  • Determine the mass of oxygen in a 7.20 g sample of Al2(SO4)3.
    9·2 answers
  • A raindrop has a mass of 50. mg and the Pacific Ocean has a mass of 7.08 x 10^20 kg. what is the mass of 1 mole of raindrops? Ho
    13·2 answers
  • Urea is an organic compound widely used as a fertilizer. Its solubility in water allows it to be made into aqueous fertilizer so
    11·1 answer
  • Two students made the Lewis dot diagrams of NH3. The diagrams are as shown.
    12·1 answer
  • A student prepared an unknown sample by making a dilute solution of the unknown sample. The dilute sample was prepared by adding
    12·1 answer
  •  A reaction container holds 5.77 g of P4 and 5.77 g of O2.
    6·1 answer
  • 1) How many aluminum atoms are there in 3.50 grams of Al2O3?
    8·1 answer
  • Which method of drawing hydrocarbons is the fastest to draw?
    15·1 answer
  • Every Methane molecule looks different. True or false?
    5·1 answer
  • How many elements are in H2CrO4
    15·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!