Answer:
The specific heat for the titanium metal is 0.524 J/g°C.
Explanation:
Given,
Q = 1.68 kJ = 1680 Joules
mass = 126 grams
T₁ = 20°C
T₂ = 45.4°C
The specific heat for the metal can be calculated by using the formula
Q = (mass) (ΔT) (Cp)
Here, ΔT = T₂ - T₁ = 45.4 - 20 = 25.4°C.
Substituting values,
1680 = (126)(25.4)(Cp)
By solving,
Cp = 0.524 J/g°C.
The specific heat for the titanium metal is 0.524 J/g°C.
The percent A by mass for substance AB =<u> 75%</u>
<h3>Further explanation</h3>
Proust states the Comparative Law that compounds are formed from elements with the same Mass Comparison, so that compounds have a fixed composition of elements
Empirical formula is the mole ratio of compounds forming elements.
From Substance AB₂ is 60.0% A by mass.
Let's say that AB₂ mass = 100 gram, then
mass A = 60 gram
mass B = 40 gram : 2 (coefficient in compound AB₂ = 2) = 20 gram
In compound AB:
Total mass = mass A + mass B
Total mass = 60 + 20 grams = 80 grams
Then the percentage of compound A = (60: 80) = 75%
<h3>Learn more</h3>
Grams of KO₂ needed to form O₂
brainly.com/question/2823257
Keywords : percent mass, substance
#LearnwithBrainly
Answer:
b
Explanation:
The reaction that is not a displacement reaction from all the options is 
In a displacement reaction, a part of one of the reactants is replaced by another reactant. In single displacement reactions, one of the reactants completely displaces and replaces part of another reactant. In double displacement reaction, cations and anions in the reactants switch partners to form products.
<em>Options a, c, d, and e involves the displacement of a part of one of the reactants by another reactant while option b does not.</em>
Correct option = b.
Answer:
The answer is: Law of multiple proportions
Explanation:
The law of multiple proportions is a law of chemical combination given by Dalton in 1803.
According to this law, if more than one chemical compound is formed by combining two elements, then the mass of an element that combines with the fixed mass of other element is represented in the form of small whole number ratio.
<u>Therefore, is an illustration of the law of the law of multiple proportions.</u>
Answer:
The mass of water = 219.1 grams
Explanation:
Step 1: Data given
Mass of aluminium = 32.5 grams
specific heat capacity aluminium = 0.921 J/g°C
Temperature = 82.4 °C
Temperature of water = 22.3 °C
The final temperature = 24.2 °C
Step 2: Calculate the mass of water
Heat lost = heat gained
Qlost = -Qgained
Qaluminium = -Qwater
Q = m*c*ΔT
m(aluminium)*c(aluminium)*ΔT(aluminium) = -m(water)*c(water)*ΔT(water)
⇒with m(aluminium) = the mass of aluminium = 32.5 grams
⇒with c(aluminium) = the specific heat of aluminium = 0.921 J/g°C
⇒with ΔT(aluminium) = the change of temperature of aluminium = 24.2 °C - 82.4 °C = -58.2 °C
⇒with m(water) = the mass of water = TO BE DETERMINED
⇒with c(water) = 4.184 J/g°C
⇒with ΔT(water) = the change of temperature of water = 24.2 °C - 22.3 °C = 1.9 °C
32.5 * 0.921 * -58.2 = -m * 4.184 * 1.9
-1742.1 = -7.95m
m = 219.1 grams
The mass of water = 219.1 grams