answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
murzikaleks [220]
2 years ago
5

The mass of neutral 16 8o=15.994915u. find the binding energy for 16 8o. express your answer in millions of electron volts to fo

ur significant figures.
Physics
1 answer:
Zarrin [17]2 years ago
7 0
Mass defect, m = 15.994915 - 8P+8N, Where P= Mass of a of proton = 1.00782503, N = Mass of a neutron = 1.0086649

Substituting,
m = 15.994915 - 8*(1.00782503+1.0086649) = -0.13700444

Binding energy = 931.48 MeV*m = 931.48*-0.13700444 = -127.62 MeV
You might be interested in
Read the lab procedure for a controlled experiment that looks at the effect of heat on the circumference of bicycle tires.
solniwko [45]

Explanation :

To start any lab work initially, we have to know the theory behind the experiment. After then the experiment should be started. At the end, the readings must be taken carefully and some conclusion can be drawn.

Some of the steps are given :

Step 1: Pump up six identical bike tires to the recommended air pressure.

Step 2: Place three tires under heat lamps, and keep the other three tires at room temperature.

Step 3: After four hours, measure the circumference of each tire.

Step 4: Record your results in the table.

The fifth step should be :

Step 5: Write the result or conclusion that shows what you have done during the entire experiment.

4 0
2 years ago
Read 2 more answers
Sophia is planning on going down an 8-m water slide. Her weight is 50 N. She knows that she has gravitational potential energy (
Pepsi [2]

Answer:The higher up an object is the greater its gravitational potential energy. The larger the distance something falls through the greater the amount of GPE the object loses as it falls. As most of this GPE gets changed into kinetic energy, the higher up the object starts from the faster it will be falling when it hits the ground.  So a change in gravitational potential energy depends on the height an object moves through.

Explanation: Lifting an apple up 1 metre is easier work than lifting an apple tree the same height. This is because a tree has more mass, so it needs to be given more gravitational potential energy to reach the same height.

6 0
2 years ago
This is really urgent
hodyreva [135]

20) When light passes from air to glass and then to air

21) When a light ray enters a medium with higher optical density, it bends towards the normal

22) Index of refraction describes the optical density

23) Light travels faster in the material with index 1.1

24) Glass refracts light more than water

25) Index of refraction is n=\frac{c}{v}

26) Critical angle: [tex]sin \theta_c = \frac{n_2}{n_1}[/tex]

27) Critical angle is larger for the glass-water interface

Explanation:

20)

It is possible to slow down light and then speed it up again by making light passing from a medium with low optical density (for example, air) into a medium with higher optical density (for example, glass), and then make the light passing again from glass to air.

This phenomenon is known as refraction: when a light wave crosses the interface between two different mediums, it changes speed (and also direction). The speed decreases if the light passes from a medium at lower optical density to a medium with higher optical density, and viceversa.

21)

The change in direction of light when it passes through the boundary between two mediums is given by Snell's law:

n_1 sin \theta_1 = n_2 sin \theta_2

with

n_1, n_2 are the refractive index of 1st and 2nd medium

\theta_1, \theta_2 are the angle of incidence and refraction (the angle between the incident ray (or refracted ray) and the normal to the boundary)

The larger the optical density of the medium, the larger the value of n, the smaller the angle: so, when a light ray enters a medium with higher optical density, it bends towards the normal.

22)

The index of refraction describes the optical density of a medium. More in detail:

  • A high index of refraction means that the material has a high optical density, which means that light travels more slowly into that medium
  • A low index of refraction means that the material has a low optical density, which means that light travels faster into that medium

Be careful that optical density is a completely different property from density.

23)

As we said in part 22), the index of refraction describes the optical density of a medium.

In this case, we have:

  • A material with refractive index of 1.1
  • A material with refractive index of 2.2

As we said previously, light travels faster in materials with a lower refractive index: therefore in this case, light travels more quickly in material 1, which has a refractive index of only 1.1, than material 2, whose index of refraction is much higher (2.2).

24)

Rewriting Snell's law,

sin \theta_2 = \frac{n_1}{n_2}sin \theta_1 (1)

For light moving from air to water:

n_1 \sim 1.00 is the index of refraction of air

n_2 = 1.33 is the index of refraction ofwater

In this case, \frac{n_1}{n_2}=\frac{1.00}{1.33}=0.75

For light moving from air to glass,

n_2 = 1.51 is the index of refraction of glass

And so

\frac{n_1}{n_2}=\frac{1.00}{1.51}=0.66

From eq.(1), we see that the angle of refraction \theta_2 is smaller in the 2nd case: so glass refracts light more than water, because of its higher index of refraction.

25)

The index of refraction of a material is

n=\frac{c}{v}

c is the speed of light in a vacuum

v is the speed of light in the material

So, the index of refraction is inversely proportional to the speed of light in the material:

  • The higher the index of refraction, the slower the light
  • The lower the index of refraction, the faster the light

26)

From Snell's law,

sin \theta_2 = \frac{n_1}{n_2}sin \theta_1

We notice that when light moves from a medium with higher refractive index to a medium with lower refractive index, n_1 > n_2, so \frac{n_1}{n_2}>1, and since sin \theta_2 cannot be larger than 1, there exists a maximum value of the angle of incidence \theta_c (called critical angle) above which refraction no longer occurs: in this case, the incident light ray is completely reflected into the original medium 1, and this phenomenon is called total internal reflection.

The value of the critical angle is given by

sin \theta_c = \frac{n_2}{n_1}

For angles of incidence above this value, total internal reflection occurs.

27)

Using:

sin \theta_c = \frac{n_2}{n_1}

For the interface glass-air,

n_1 \sim 1.51\\n_2 = 1.00

The critical angle is

\theta_c = sin^{-1}(\frac{n_2}{n_1})=sin^{-1}(\frac{1.00}{1.51})=41.5^{\circ}

For the interface glass-water,

n_1 \sim 1.51\\n_2 = 1.33

The critical angle is

\theta_c = sin^{-1}(\frac{n_2}{n_1})=sin^{-1}(\frac{1.33}{1.51})=61.7^{\circ}

So, the critical angle is larger for the glass-water interface.

Learn more about refraction:

brainly.com/question/3183125

brainly.com/question/12370040

#LearnwithBrainly

7 0
2 years ago
Write the equivalent formulas for velocity, acceleration, and force using the relationships covered for UCM, Newton’s Laws, and
yKpoI14uk [10]

Answer:

The newton’s second law is F=ma

The Gravitational force is F=\dfrac{Gm_{1}m_{2}}{r^2}

Explanation:

Given that,

The equivalent formulas for velocity, acceleration, and force using the relationships covered for UCM, Newton’s Laws, and Gravitation.

We know that,

Velocity :

The velocity is equal to the rate of position of the object.

v=\dfrac{dx}{dt}....(I)

Acceleration :

The acceleration is equal to the rate of velocity of the object.

a=\dfrac{dv}{dt}....(II)

Newton’s second Laws

The force is equal to the change in momentum.

In mathematically,

F=\dfrac{d(p)}{dt}

Put the value of p

F=\dfrac{d(mv)}{dt}

F=m\dfrac{dv}{dt}

Put the value from equation (II)

F=ma

This is newton’s second laws.

Gravitational force :

The force is equal to the product of mass of objects and divided by square of distance.

In mathematically,

F=\dfrac{Gm_{1}m_{2}}{r^2}

Where, m₁₂ = mass of first object

m= mass of second object

r = distance between both objects

Hence, The newton’s second law is F=ma

The Gravitational force is F=\dfrac{Gm_{1}m_{2}}{r^2}

3 0
2 years ago
A 2200 kg truck has put its front bumper against the rear bumper of a 2400 kg SUV to give it a push. With the engine at full pow
leonid [27]

Answer:

a) The maximum possible acceleration the truck can give the SUV is 7.5 meters per second squared

b) The force of the SUV's bumper on the truck's bumper is 18000 newtons

Explanation:

a) By Newton's second law we can find the relation between force and acceleration of the SUV:

F=ma

With F the maximum force the truck applies to the SUV, m the mass of the SUV and a the acceleration of the SUV; solving for a:

a=\frac{F}{m}=\frac{18000}{2400}\approx7.5\,\frac{m}{s^{2}}

b) Because at this acceleration the truck's bumper makes a force of 18000 N on the SUV’s bumper by Third Newton’s law the force of the SUV’s bumper on the truck’s bumper is 18000 N too because they are action-reaction force pairs.

7 0
2 years ago
Other questions:
  • A boy is exerting a force of 70 N at a 50-degree angle on a lawn mower. He is accelerating at 1.8 m/s2. Round the answers to the
    6·2 answers
  • A 5 inch tall balloon shoot doubles in height every 3 days. if the equation y=ab^x, where is x is the number of doubling periods
    10·1 answer
  • Lydia is often described as having a positive outlook on life. She assumes the best of people and situations. Lydia exemplifies
    14·2 answers
  • What would happen to the apparent change in mass if the direction of the current is reversed?
    12·1 answer
  • A point charge of 6.8 C moves at 6.5 × 104 m/s at an angle of 15° to a magnetic field that has a field strength of 1.4 T.
    5·2 answers
  • A body covers a semicircle of radius 7cm in 5s .find its linear speed
    9·1 answer
  • A water jet that leaves a nozzle at 60 m/s at a flow rate of 120 kg/s is to be used to generate power by striking the buckets lo
    10·1 answer
  • Learning Goal: How do 2 ordinary waves build up a "standing" wave? A very generic formula for a traveling wave is: y1(x,t)=Asin(
    5·1 answer
  • A low-pressure sodium vapor lamp whose wavelength is 5.89 x 10−7 m passes through double-slits that are 6.7 x 10−4 m apart and p
    10·1 answer
  • What is the magnitude of the force between a 25μC charge exerts on a -10μC charge 8.5cm away?
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!