The answer is 3.39 mol.
<span>Avogadro's number is the number of molecules in 1 mol of substance.
</span><span>6.02 × 10²³ molecules per 1 mol.
</span>2.04 × 10²⁴<span> molecules per x.
</span>6.02 × 10²³ molecules : 1 mol = 2.04 × 10²⁴ molecules : x
x = 2.04 × 10²⁴ molecules * 1 mol : 6.02 × 10²³ molecules
x = 2.04/ 6.02 × 10²⁴⁻²³ mol
x = 0.339 × 10 mol
<span>x = 3.39 mol
</span>
Answer:- 
Solution:- It is a volume unit conversion problem where we are asked to convert the volume from
to microliters.
We know that:
= 1 mL

and, 
Let's use these conversions factors for the desired conversion using dimensional as:

= 
So, the answer is
.
<span>1 ml of water weighs 1 gram so 1 liter (1000 ml) weighs 1000 grams. A 3% solution (3% = 0.03) of hydrogen peroxide (w/v) would contain 1000 grams x 0.03 or 30 grams. The chemical formula of hydrogen peroxide is H2O2 and a mole weighs 34.0147 grams/mole. So 30 grams of H2O2 divided by 34.0147 grams/mole equals 0.88 moles of H2O2. The concentration of a 3% (w/v) hydrogen peroxide solution therefore contains 30 grams of H202 (or 0.88 moles of H202) per in a liter of water (or 1000 grams H20) would thus be 0.88 moles H2O2 per liter (0.88 moles H2O2/l) .</span>
Your answer is right.
Important elements to consider:
- to use the balanced equation (which you did)
- divide the masses of each compound by the correspondant molar masses (which you did)
- compare the theoretical proportions with the current proportions
Theoretical: 2 mol of Na OH : 1 mol of CuSO4
Then 4 mol of NaOH need 2 mol of CUSO4.
Given that you have more than 2 mol of of CUSO4 you have plenty of it and the NaOH will consume first, being this the limiting reagent.