KE = mv2
2
KE = ? J
m = 1.5 kg
v = 55 m/s
KE = 1.5 kg x (55 m/s)2
2
KE = 2,268.75 J
When an element losses its electron its called a cation. When an element accepted that electron it called anion. This is called an ionic bond.
Answer: Option (c) is the correct answer.
Explanation:
A chemical reaction is defined as the reaction where a chemical bond will break in order to form a new bond due to the formation of a new substance.
For example, 
Here, NaCl is the new substance that is formed. A chemical reaction will always bring change in chemical composition of a substance.
The production of hydrogen gas from water, the tarnishing of a copper penny, charging a cellular phone and burning a plastic water bottle are all chemical reactions.
Whereas a reaction where no change in chemical composition of a substance takes place is known as a physical reaction.
For example, chopping a log into sawdust will change the shape but it will not bring any change in chemical composition of the substance.
Thus, we can conclude that in the following list, only chopping a log into sawdust is not an example of a chemical reaction.
The question is incomplete, the complete question is;
The table above summarizes data given to a student to evaluate the type of change that took place when substance X was mixed with water. The student claimed that the data did not provide enough evidence to determine whether a chemical or physical change took place and that additional tests were needed. Which of the following identifies the best way to gather evidence to support the type of change that occurred when water and Xwere mixed?
A. Measuring the melting point of the mixture of water and X
B. Adding another substance to the mixture of water and X to see whether a solid forms
C Measuring and comparing the masses of the water, X, and the mixture of water and X
D Measuring the electrical conductivities of X and the mixture of water and X
Answer:
D Measuring the electrical conductivities of X and the mixture of water and X
Explanation:
Unfortunately, I am unable to reproduce the table here. However, from the table, the temperature of the of the mixture of the solid X and water was 101.6°C. This is above the boiling point of water and way below the temperature of the solid X.
This goes a long way to suggest that there was some kind of interaction between the water and X which accounted for the observed temperature of the system of X in water.
The only way we can be able to confirm if X actually dissolved in water is to measure the conductivity of the water. dissolved solids increase the conductivity of water.