<h3>Answer:</h3>
0.8133 mol
<h3>Solution:</h3>
Data Given:
Moles = n = ??
Temperature = T = 25 °C + 273.15 = 298.15 K
Pressure = P = 96.8 kPa = 0.955 atm
Volume = V = 20.0 L
Formula Used:
Let's assume that the Argon gas is acting as an Ideal gas, then according to Ideal Gas Equation,
P V = n R T
where; R = Universal Gas Constant = 0.082057 atm.L.mol⁻¹.K⁻¹
Solving Equation for n,
n = P V / R T
Putting Values,
n = (0.955 atm × 20.0 L) ÷ (0.082057 atm.L.mol⁻¹.K⁻¹ × 298.15 K)
n = 0.8133 mol
Two electrons is your answer glad to help!
Answer:
Explanation:
<u>1) Balanced chemical equation:</u>
<u>2) Mole ratio:</u>
- 2 mol S : 3 mol O₂ : 2 mol SO₃
<u>3) Limiting reactant:</u>
n = 6.0 g / 32.0 g/mol = 0.1875 mol O₂
n = 7.0 g / 32.065 g/mol = 0.2183 mol S
Actual ratio: 0.1875 mol O₂ / 0.2183 mol S =0.859
Theoretical ratio: 3 mol O₂ / 2 mol S = 1.5
Since there is a smaller proportion of O₂ (0.859) than the theoretical ratio (1.5), O₂ will be used before all S be consumed, and O₂ is the limiting reactant.
<u>4) Calcuate theoretical yield (using the limiting reactant):</u>
- 0.1875 mol O₂ / x = 3 mol O₂ / 2 mol SO₃
- x = 0.1875 × 2 / 3 mol SO₃ = 0.125 mol SO₃
<u>5) Yield in grams:</u>
- mass = number of moles × molar mass = 0.125 mol × 80.06 g/mol = 10.0 g
<u>6) </u><em><u>Percent yield:</u></em>
- Percent yield, % = (actual yield / theoretical yield) × 100
- % = (7.9 g / 10.0 g) × 100 = 79%
Answer:
We can seprate oil and water by the process of seprating funnel
The correct answer is option 2 and 3.
The two scenarios that illustrate the relationship between pressure and volume as described by Boyle’s law are as follows:
2. The volume of an underwater bubble increases as it rises and the pressure decreases.
3. The pressure increases in an inflated plastic bag when the bag is stepped on.
According to Boyle's law, pressure of a gas is inversely proportional to its volume at constant temperature. This means that pressure rises as the volume increases and vice versa.