answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
lys-0071 [83]
2 years ago
5

at the sewing store, ava bought a bag of buttons. 21 in all. 21 of the buttons were large. what percentage of the buttons wre la

rge
Physics
2 answers:
erma4kov [3.2K]2 years ago
6 0
If she only has 21 buttons and all 21 of them are large, then all of her buttons are large. so 100% of the buttons would be large.
lukranit [14]2 years ago
4 0

Answer: 100%

Explanation:

Given : The total number of buttons in the bag= 21

The number of larger buttons = 21

Then , the percentage of the buttons were large is given by :-

\dfrac{\text{Number of large buttons}}{\text{Total buttons}}\times100\\\\\dfrac{21}{21}\times100=100\%

Therefore, the percentage of the buttons were large = 100%

You might be interested in
A ray of light is incident on a plane surface separating two sheets of glass with refractive indexes 1.70 and 1.58. The angel of
dlinn [17]

Answer:

r = 71.8⁰

Explanation:

given,

refractive index of the glass 1 = 1.70

refractive index of glass 2 = 1.58

angle of incidence = 62°

angle of refraction =?

using Snell's law

\dfrac{sin\ i}{sin\ r} = \dfrac{n_2}{n_1}

\dfrac{sin\ 62^0}{sin\ r} = \dfrac{1.58}{1.70}

1.7 ×sin 62 ^0 = 1.58× sin r

sinr = \dfrac{1.7\times sin 62^0}{1.58}

sin r = 0.95

r = sin⁻¹(0.95)

r = 71.8⁰

angle of refraction =r = 71.8⁰

4 0
2 years ago
Read 2 more answers
A 20 watt lightbulb uses 20 Joules of energy every second.A person expends 50 watts of energy per stair when climbing up stairs.
Pachacha [2.7K]
20W = 20 J/s

Energy expended during climbing stairs = 50 W of energy/stair = 50J/stair

For 20 stairs, Total energy = 50x20 = 1000 J

This can light bulbs for, T= 1000J/20 J/s =50 seconds
6 0
2 years ago
 A bartender slides a beer mug at 1.50 m/s toward a customer at the end of a frictionless bar that is 1.20 m tall. The customer
Andrew [12]

Answer:

a) the mug hits the floor 0.7425m away from the end of the bar. b) |V|=5.08m/s θ= -72.82°

Explanation:

In order to solve this problem, we must first start by doing a drawing of the situation. (see attached picture).

a)

From the drawing we can see that we are dealing with a two dimensions movement problem. So in order to find out how far away from the bar the mug will fall, we need to start by finding how long it will take the mug to be in the air, so we analyze the vertical movement of the mug.

In order to find the time we need to use the following formula, which contains the data we know:

y_{f}=y_{0}+v_{y0}t+\frac{1}{2}at^{2}

we know that y_{f}=0 and that v_{y0}=0 as well, so the formula is simplified to:

0=y_{0}+\frac{1}{2}at^{2}

we can now solve this for t, so we get:

-y_{0}=\frac{1}{2}at^{2}

-2y_{0}=at^{2}

\frac{-2y_{0}}{a}=t^{2}

t=\sqrt{\frac{-2y_{0}}{a}}

we know that y_{0}=1.20m and that a=g=-9.8m/s^{2}

the acceleration of gravity is negative because the mug is moving downwards. So we substitute them into the given formula:

t=\sqrt{\frac{-2(1.20m)}{(-9.8m/s^{2})}}

which yields:

t=0.495s

we can now use this to find the horizontal distance the mug travels. We know that:

V_{x}=\frac{x}{t}

so we can solve this for x, so we get:

x=V_{x}t

and we can now substitute the values we know:

x=(1.5m/s)(0.495s)

which yields:

x=0.7425m

b) Now that we know the time it takes the mug to hit the floor, we can use it to find the final velocity in the y-direction by using the following formula:

a=\frac{v_{f}-v_{0}}{t}

we know the initial velocity in the vertical direction is zero, so we can simplify the formula:

a=\frac{v_{f}}{t}

so we can solve this for the final velocity:

V_{yf}=at

in this case the acceleration is the same as the acceleration of gravity (which is negative) so we can substitute that and the time we found on the previous part to get:

V_{yf}=(-9.8m/s^{2})(0.495s)

which yields:

V_{yf}=-4.851m/s

so now we know the components of the final velocity, which are:

V_{xf}=1.5m/s and V_{yf]=-4.851m/s

so now we can find the speed by determining the magnitude of the vector, like this:

|V|=\sqrt{V_{x}^{2}+V_{y}^{2}}

so we get:

|V|=\sqrt{(1.5m/s)^{2}+(-4.851m/s)^{2}

which yields:

|V|=5.08m/s

now, to find the direction of the impact, we can use the following equation:

\theta = tan^{-1} (\frac{V_{y}}{V_{x}})

so we get:

\theta = tan^{-1} (\frac{-4.851m/s}{(1.5m/s)})

which yields:

\theta = -72.82^{o}

4 0
2 years ago
Write the equivalent formulas for velocity, acceleration, and force using the relationships covered for UCM, Newton’s Laws, and
yKpoI14uk [10]

Answer:

The newton’s second law is F=ma

The Gravitational force is F=\dfrac{Gm_{1}m_{2}}{r^2}

Explanation:

Given that,

The equivalent formulas for velocity, acceleration, and force using the relationships covered for UCM, Newton’s Laws, and Gravitation.

We know that,

Velocity :

The velocity is equal to the rate of position of the object.

v=\dfrac{dx}{dt}....(I)

Acceleration :

The acceleration is equal to the rate of velocity of the object.

a=\dfrac{dv}{dt}....(II)

Newton’s second Laws

The force is equal to the change in momentum.

In mathematically,

F=\dfrac{d(p)}{dt}

Put the value of p

F=\dfrac{d(mv)}{dt}

F=m\dfrac{dv}{dt}

Put the value from equation (II)

F=ma

This is newton’s second laws.

Gravitational force :

The force is equal to the product of mass of objects and divided by square of distance.

In mathematically,

F=\dfrac{Gm_{1}m_{2}}{r^2}

Where, m₁₂ = mass of first object

m= mass of second object

r = distance between both objects

Hence, The newton’s second law is F=ma

The Gravitational force is F=\dfrac{Gm_{1}m_{2}}{r^2}

3 0
2 years ago
A rocket moves through outer space a 12,000 m/s. At this time, how much time would be required to travel the distance from Earth
nexus9112 [7]
12000 m/s = 12 km/s. Now to go 380000 km, it will take some time. How much time is given in the formula 12km/s. You go 12 kilometers every second. So you take \frac{380000km}{12km/s} and that gives you 31,666.666 seconds. 
6 0
2 years ago
Read 2 more answers
Other questions:
  • two coconuts fall freely from rest at the same time, one twice as high as the other. If The coconut from the shorter tree takes
    8·1 answer
  • Suppose a police officer is 1/2 mile south of an intersection, driving north towards the intersection at 30 mph. at the same tim
    13·2 answers
  • How are uniform circular motion maps the same as linear motion maps? Check all that apply.
    12·2 answers
  • A policeman starts giving chase 60 seconds after a stolen car zooms by at 108 km/hr. At what minimum speed should he drive if he
    12·1 answer
  • A (1.25+A) kg bowling ball is hung on a (2.50+B) m long rope. It is then pulled back until the rope makes an angle of (12.0+C)o
    13·1 answer
  • A passenger railroad car has a total of 8 wheels. Springs on each wheel compress--slightly--when the car is loaded. Ratings for
    12·1 answer
  • At a processing plant, olive oil of density 875 kg/m3 flows in a horizontal section of hose that constricts from a diameter of 3
    14·1 answer
  • Seat belts and air bags save lives by reducing the forces exerted on the driver and passengers in an automobile collision. Cars
    14·1 answer
  • A stubborn, 100 kgkg mule sits down and refuses to move. To drag the mule to the barn, the exasperated farmer ties a rope around
    13·1 answer
  • An egg falls from a nest at a height of 4m. What speed will it have when it is 1m from the ground? Neglect air resistance and ta
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!