Answer:
$12159 per year.
Step-by-step explanation:
If I invest $x each year at the simple interest of 7.5%, then the first $x will grow for 35 years, the second $x will grow for 34 years and so on.
So, the total amount that will grow after 35 years by investing $x at the start of each year at the rate of 7.5% simple interest will be given by

= ![35x + \frac{x \times 7.5}{100} [35 + 34 + 33 + ......... + 1]](https://tex.z-dn.net/?f=35x%20%2B%20%5Cfrac%7Bx%20%5Ctimes%207.5%7D%7B100%7D%20%5B35%20%2B%2034%20%2B%2033%20%2B%20.........%20%2B%201%5D)
= ![35x + \frac{x \times 7.5}{100} [\frac{1}{2} (35) (35 + 1)]](https://tex.z-dn.net/?f=35x%20%2B%20%5Cfrac%7Bx%20%5Ctimes%207.5%7D%7B100%7D%20%5B%5Cfrac%7B1%7D%7B2%7D%20%2835%29%20%2835%20%2B%201%29%5D)
{Since sum of n natural numbers is given by
}
= 35x + 47.25x
= 82.25x
Now, given that the final amount will be i million dollars = $1000000
So, 82.25x = 1000000
⇒ x = $12,158. 05 ≈ $12159
Therefore. I have to invest $12159 per year. (Answer)
Answer:
150 oz.
Step-by-step explanation:
There are already 150 ounces of alloy of nickel.
Of this 150 oz, 70% is pure i.e. nickel content = 150(0.7) = 105 oz
Now available is
Nickel Other metals
105 45
Let x oz of pure nickel is added.
Then new alloy will have 105+x oz nickel in total of 150+x oz.
Percentage pure = 
Simplify to get

Hence answer is 150 oz should be added.
To answer this question, an assumption must be made, that Eva spends 8 hours a day working. If this is the case, then Eva will complete jobs w, x, and v on day one, for a total of six hours. Since the next job (y) requires 4 hours, she will spend two hours working that day, leaving 2 more hours to go on that job. The next day she will spend 2 hours finishing job y, completing it, and finish the longest job z (hours) that day. This means she had 4 jobs on day one, and 2 jobs on day 2 for and average of 3 jobs per day.
This answer assumes an 8 hour work day, and that Eva can start a job she cannot finish that day.
Answer:
t = 137.9 years
Step-by-step explanation:
Hi, to answer this question we have to apply an exponential growth function:
A = P (1 + r) t
Where:
p = original population
r = growing rate (decimal form)
t= years
A = population after t years
Replacing with the values given:
A = 6,250 (1 + 3.75/100)^t
A = 6,250 (1 + 0.0375)^t
A = 6,250 (1.0375)^t
1915-1890 = 25 years passed (t)
A = 6,250 (1.0375)^25
A = 15,689
1940-1890 = 50 years passed (t)
A = 6,250 (1.0375)^50
A = 39,381
- When will the population reach 1,000,000?. We have to subtitute A=1000000 and solve for t.
1,000,000= 6,250 (1.0375)^t
1,000,000/ 6,250 =(1.0375)^t
160 = 1.0375^t
log 160 = log 1.0375^t
log 160 = (t ) log 1.0375
log160 / log 1.0375= t
t = 137.9 years
Answer:
64.89 is the total cost
Step-by-step explanation:
63 x .03 = 1.89
63 + 1.89 = 64.89