answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Nikolay [14]
2 years ago
5

(see fluids in the news article titled "walking on water ," section 1.9 .) (a) the water strider bug shown in fig. p1.131 is sup

ported on the surface of a pond by surface tension acting along the interface between the water and the bug's legs. determine the minimum length of this interface needed to support the bug. assume the bug weighs 1 × 10-4 n and the surface tension force acts vertically upwards. (b) repeat part (a) if surface tension were to support a person weighing 640 n.
Physics
1 answer:
andrew11 [14]2 years ago
8 0

Part a)

Surface tension of water

S = 72 * 10^{-3} N/m

Weight of the bug is

W = 1 * 10^{-4} N

now we can say

F = S*L

1*10^{-4} = 72 * 10^{-3} * L

L = 1.39 mm

Part b)

Now if the same surface is to balance a man of weight 640 N

Now by same formula

F = S*L

640 = 72*10^{-3} * L

L = 8.89 * 10^3 m

You might be interested in
An object is released from rest near and above Earth’s surface from a distance of 10m. After applying the appropriate kinematic
Damm [24]

Answer:

v_y = 12.54 m/s

Explanation:

Given:

- Initial vertical distance y_o = 10 m

- Initial velocity v_y,o  = 0 m/s

- The acceleration of object in air = a_y

- The actual time taken to reach ground t = 3.2 s

Find:

- Determine the actual speed of the object when it reaches the ground?

Solution:

- Use kinematic equation of motion to compute true value for acceleration of the ball as it reaches the ground:

                             y = y_o + v_y,o*t + 0.5*a_y*t^2

                             0 = 10 + 0 + 0.5*a_y*(3.2)^2

                             a_y = - 20 / (3.2)^2 = 1.953125 m/s^2

- Use the principle of conservation of total energy of system:

                             E_p - W_f = E_k

Where,                  E_p = m*g*y_o

                             W_f = m*a_y*(y_i - y_f)      ..... Effects of air resistance

                             E_k = 0.5*m*v_y^2

Hence,                  m*g*y_o - m*a_y*(y_i - y_f) = 0.5*m*v_y^2

                             g*(10) - (1.953125)*(10) = 0.5*v_y^2

                             v_y = sqrt (157.1375)

                            v_y = 12.54 m/s

4 0
2 years ago
An infinite sheet of charge is located in the y-z plane at x = 0 and has uniform charge denisity σ1 = 0.51 μC/m2. Another infini
NNADVOKAT [17]

Answer:

 E_total = 5.8 10⁴ N /C

Explanation:

In this problem they ask to find the electric field at two points, the electric field is a vector magnitude, so we can find the field for each charged shoah and add them vectorally at the point of interest.

To find the electric field of a charged conductive sheet, we can use the Gauss law,

        Ф = E. d S = q_{int} / ε₀

Let us use as a Gaussian surface a small cylinder, with the base parallel to the sheet, the electric field between the sheet and the normal one next to the cylinder has 90º, so its scalar product is zero, the electric field between the sheet and the base has An Angle of 0º, therefore the scalar product is reduced to the algebraic product.

Let's look for the electric field for plate 1

The total flow is the same for each face, as there are two sides of the cylinder

       2E A = q_{int} /ε₀

For the internal load we use the concept of surface density

      σ = q_{int1} / A

      q_{int1} = σ₁ A

Let's replace

       2E A = σ₁ A /ε₀

        E₁ = σ₁ / 2ε₀

For the other plate we have a field with a similar expression, but of negative sign

       E₂ = -σ₂ / 2ε₀

The total field is,

        E_total = σ₁ / 2ε₀ + σ₂ / 2ε₀

       E_total = (σ₁ + σ₂) / 2ε₀

Let us apply this expression to our case, when placing a sheet without electric charge, a charge is induced for each sheet, the plate 1 that has a positive charge the electric field is protruding to the right and the plate 2 that has a negative charge creates a incoming field, to the right, as the two fields have the same address add

           The conductive sheet in the middle pate undergoes an induced load that is created by the other two plates, but because the conductive plate the charges are mobile and are replaced.

       E_total = (0.51 +0.52) 10⁻⁶ / 2 8.85 10⁻¹²

       E_total = 5.8 10⁴ N /C

Note that the field is independent of the distance between the plates

4 0
2 years ago
5. A wave with peaks separated by .34 m has a wavelength of ________________m.
Eduardwww [97]

Answer: 0.17 I think

Explanation:

I asked a doctor

8 0
2 years ago
Two oppositely charged but otherwise identical conducting plates of area 2.50 square centimeters are separated by a dielectric 1
7nadin3 [17]

Answer:

A). σ = 3.823 x 10^{-5} C^{2}/N-m^{2}

B). \sigma ^{'}=2.76\times 10^{-5} C/m^{2}

C). U=10.322 J

Explanation:

A). We know magnitude of charge per unit area for a conducting plate is given by

\sigma =k.\varepsilon _{0}.E

where, E is resultant electric field = 1.2 x 10^{6} V/m

           \varepsilon _{0} is permittivity of free space = 8.85 x 10^{-12} C^{2}/N-m^{2}

           k is dielectric constant = 3.6

∴\sigma =k.\varepsilon _{0}.E

                     = 3.6 x 8.85 x10^{-12} x 1.2 x 10^{6}

                    = 3.823 x 10^{-5} C^{2}/N-m^{2}

B).Now we know that the magnitude of charge per unit area on the surface of the dielectric plate is given by

\sigma ^{'}=\sigma\left ( 1-\frac{1}{k} \right )

\sigma ^{'}=3.823\times 10^{-5}\left ( 1-\frac{1}{3.6} \right )

\sigma ^{'}=2.76\times 10^{-5} C/m^{2}

C).

Area of the plate, A = 2.5 cm^{2}

                                 = 2.5 x 10^{-4}m^{2}

diameter of the plate, d = 1.8 mm

                                        = 1800 m

∴ Total energy stored in the capacitor

U=\frac{1}{2}k\varepsilon _{0}E^{2}Ad

U=\frac{1}{2}\times 3.6\times8.85 \times10^{-12}\times\left ( 1.2\times 10^{6} \right ) ^{2}\times 2.5\times 10^{-4}\times 1800

U=10.322 J

4 0
2 years ago
The maximum efficiency of a heat engine operating between 2 degrees c and 200 degrees c will be about:
Bess [88]
Hui4itfuwrtbitbwibrknfl3unfn6io4gnig4klg4mgmyy4m;l3
6 0
2 years ago
Other questions:
  • Which muscle disorder does donna’s doctor diagnose? donna is suffering from leg pain in which the calf muscles contract involunt
    15·2 answers
  • student uses a magnet to move a 0.025 kg metal ball magnet exerts a force of 5N which causes the ball to begin moving what is th
    11·1 answer
  • A beam of electrons moves at right angles to a magnetic field of 4.5 × 10-2 tesla. If the electrons have a velocity of 6.5 × 106
    14·1 answer
  • What is the direction of the current in the loop as the loop rotates clockwise through the magnetic field from as viewed from th
    14·2 answers
  • A skateboarder with mass ms = 54 kg is standing at the top of a ramp which is hy = 3.3 m above the ground. The skateboarder then
    14·1 answer
  • What mass of ice (in g) can be melted if 27.2 kJ of thermal energy are added at the freezing point? Use molar mass = 18.02 g/mol
    10·1 answer
  • . A spring has a length of 0.200 m when a 0.300-kg mass hangs from it, and a length of 0.750 m when a 1.95-kg mass hangs from it
    15·1 answer
  • A plane wave with a wavelength of 500 nm is incident normally on a single slit with a width of 5.0 x 10–6 m. Consider waves that
    6·2 answers
  • A very tall building has a height H0 on a cool spring day when the temperature is T0. You decide to use the building as a sort o
    10·1 answer
  • Starting at t = 0 a net external force in the +x-direction is applied to an object that has mass 5.00 kg. A graph of the force a
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!