For this case we have the following equation:
cot θ = c
Rewriting we have:
cosine (θ) / sine (θ) = c
From here, we must clear the value of the sinus (θ).
We have then:
sine (θ) = (1 / c) * cosine (θ)
Answer:
a formula for sin θ in terms of c is:
sine (θ) = (1 / c) * cosine (θ)
6x^2 = 54
6(x^2) = 54
6(x^2)/6 = 54/6
x^2 = 9
rt(x^2) = rt(9)
x = 3
hope this helps
First you convert the percentage into a decimal. 18% to 0.18, then you multiply that decimal to the price of the item being discounted and bam, you have your price.
Answer:


![V(X) = E(X^2)-[E(X)]^2=349.2-(18.6)^2=3.24](https://tex.z-dn.net/?f=V%28X%29%20%3D%20E%28X%5E2%29-%5BE%28X%29%5D%5E2%3D349.2-%2818.6%29%5E2%3D3.24)
The expected price paid by the next customer to buy a freezer is $466
Step-by-step explanation:
From the information given we know the probability mass function (pmf) of random variable X.

<em>Point a:</em>
- The Expected value or the mean value of X with set of possible values D, denoted by <em>E(X)</em> or <em>μ </em>is

Therefore

- If the random variable X has a set of possible values D and a probability mass function, then the expected value of any function h(X), denoted by <em>E[h(X)]</em> is computed by
![E[h(X)] = $\sum_{D} h(x)\cdot p(x)](https://tex.z-dn.net/?f=E%5Bh%28X%29%5D%20%3D%20%24%5Csum_%7BD%7D%20h%28x%29%5Ccdot%20p%28x%29)
So
and
![E[h(X)] = $\sum_{D} h(x)\cdot p(x)\\E[X^2]=$\sum_{D}x^2\cdot p(x)\\ E(X^2)=16^2\cdot 0.3+18^2\cdot 0.1+20^2\cdot 0.6\\E(X^2)=349.2](https://tex.z-dn.net/?f=E%5Bh%28X%29%5D%20%3D%20%24%5Csum_%7BD%7D%20h%28x%29%5Ccdot%20p%28x%29%5C%5CE%5BX%5E2%5D%3D%24%5Csum_%7BD%7Dx%5E2%5Ccdot%20p%28x%29%5C%5C%20E%28X%5E2%29%3D16%5E2%5Ccdot%200.3%2B18%5E2%5Ccdot%200.1%2B20%5E2%5Ccdot%200.6%5C%5CE%28X%5E2%29%3D349.2)
- The variance of X, denoted by V(X), is
![V(X) = $\sum_{D}E[(X-\mu)^2]=E(X^2)-[E(X)]^2](https://tex.z-dn.net/?f=V%28X%29%20%3D%20%24%5Csum_%7BD%7DE%5B%28X-%5Cmu%29%5E2%5D%3DE%28X%5E2%29-%5BE%28X%29%5D%5E2)
Therefore
![V(X) = E(X^2)-[E(X)]^2\\V(X)=349.2-(18.6)^2\\V(X)=3.24](https://tex.z-dn.net/?f=V%28X%29%20%3D%20E%28X%5E2%29-%5BE%28X%29%5D%5E2%5C%5CV%28X%29%3D349.2-%2818.6%29%5E2%5C%5CV%28X%29%3D3.24)
<em>Point b:</em>
We know that the price of a freezer having capacity X is 60X − 650, to find the expected price paid by the next customer to buy a freezer you need to:
From the rules of expected value this proposition is true:
We have a = 60, b = -650, and <em>E(X)</em> = 18.6. Therefore
The expected price paid by the next customer is

Answer:
The answer in the procedure
Step-by-step explanation:
Let
A1 ------> the area of the first square painting
A2 ----> the area of the second square painting
D -----> the difference of the areas
we have


case 1) The area of the second square painting is greater than the area of the first square painting
The difference of the area of the paintings is equal to subtract the area of the first square painting from the area of the second square painting
D=A2-A1


case 2) The area of the first square painting is greater than the area of the second square painting
The difference of the area of the paintings is equal to subtract the area of the second square painting from the area of the first square painting
D=A1-A2

