The mathematical expression for heat capacity at constant pressure is given as:
(1)
where, Q = heat capacity
= molar heat capacity at constant pressure
= change in temperature
n = number of moles
Therefore,
= 
= 
Number of moles =
=
= 0.186 mole
Put the values in formula (1)
(conversion of degree Celsius into kelvin)
=
= 6.32 J /mol K
Hence, molar heat capacity of benzene at constant pressure = 
Answer:
to which cations from the salt bridge migrate
Explanation:
A voltaic cell is an electrochemical cell that uses spontaneous redox reactions to generate electricity. It's composed of a cathode, an anode, and a salt bridge.
In cathode, the substance is gaining electrons, so it's reducing, in the anode, the substance is losing electrons, so it's oxidating. The flow of electrons is from the anode to the cathode.
The salt bridge is a bond between the cathode and the anode. When the redox reaction takes place, the substances produce its ions, so the solution is no more neutral. The salt bridge allows the solutions to become neutral and the redox reaction continues.
So, the cathode produces anions, which goes to the anode, and the anode produces cations, which goes to the cathode. Then, the cathode n a voltaic cell is the electrode to which cations from salt bridge migrate and where the reduction takes place.
3.25 kg in g = 3.25 * 1000 = 3250 g
Molar mass C₂H₆O₂ = 62.0 g/mol
Mass solvent = 7.75 kg
Number of moles:
n = mass solute / molar mass
n = 3250 / 62.0
n = 52.419 moles
Molality = moles of solute / kilograms of solvent
M = 52.419 / 7.75
M = 6.7637 mol/kg
hope this helps!
As we know that Molarity is given as,
M = moles / V
Solving for V,
V = moles / M ------------------(1)
Also, moles is equal to,
moles = mass / M. mass -------------(2)
puting value of moles from eq. 2 into eq. 1,
V = (mass / M.mass) / M
Putting values,
V = (45 g / 164 g/mol) / 1.3 mol/dm³
V = 0.21 dm³