Answer:-
0.91% is the students % of error
Explanation: -
Accepted value= 12.11 grams
Measured value = 12.22 grams
Error = 12.22-12.11 = 0.11 grams
Percentage error =
x100
= 0.91 %
Thus 0.91% is the students % of error
Answer:
The value of the silver in the coin is 35.3 $
Explanation:
First of all, let's calculate the volume of the coin.
2π . r² . thickness = volume
r = diameter/2
r = 41 mm/2 = 20.5 mm
2 . π . (20.5 mm)² . 2.5 mm = 6601 mm³
Now, this is the volume of the coin, so we must find out how many grams are on it.
6601 mm³ / 1000 = 6.60 cm³
Let's apply density.
D = Mass / volume
10.5 g/cm³ = mass /6.60 cm³
10.5 g/cm³ . 6.60 cm³ = mass
69.3 g = mass
Each gram has a cost of 0.51$
69.3 g . 0.51$ = 35.3 $
Answer:
Explanation:
As per Boltzman equation, <em>kinetic energy (KE)</em> is in direct relation to the <em>temperature</em>, measured in absolute scale Kelvin.
Then, <em>the temperature at which the molecules of an ideal gas have 3 times the kinetic energy they have at any given temperature will be </em><em>3 times</em><em> such temperature.</em>
So, you must just convert the given temperature, 32°F, to kelvin scale.
You can do that in two stages.
- First, convert 32°F to °C. Since, 32°F is the freezing temperature of water, you may remember that is 0°C. You can also use the conversion formula: T (°C) = [T (°F) - 32] / 1.80
- Second, convert 0°C to kelvin:
T (K) = T(°C) + 273.15 K= 273.15 K
Then, <u>3 times</u> gives you: 3 × 273.15 K = 819.45 K
Since, 32°F has two significant figures, you must report your answer with the same number of significan figures. That is 820 K.
Answer:
Explanation:
q = (mass) (temp change) (specific heat)
q = (10000 g) (40 °C) (0.385 J/g⋅°C) = 154000 J = 154 kJ
154 kJ / 2220 kJ/mol = 0.069369369 mol
0.069369369 mol times 44.0962 g/mol = 3.06 g (to three sig figs)
answer choice 4