<span>Since the diploid number of mosquitoes is six, that means that there are 6 chromosomes in every somatic (non-reproductive) cell,including the cells that make up the stomach.The six chromosomes represent two three-chromosome sets the mosquito received one set of three chromosomes from the egg cell of the mother and a similar set of three chromosomes from the sperm cell of the father.</span>
Answer:
The correct answer is 28.2 %.
Explanation:
Based on the given question, the partial pressures of the gases present in the trimix blend is 55 atm oxygen, 50 atm helium, and 90 atm nitrogen. Therefore, the sum of the partial pressure of gases present in the blend is,
Ptotal = PO2 + PN2 + PHe
= 55 + 90 + 50
= 195 atm
The percent volume of each gas in the trimix blend can be determined by using the Amagat's law of additive volume, that is, %Vx = (Px/Ptot) * 100
Here Px is the partial pressure of the gas, Ptot is the total pressure and % is the volume of the gas. Now,
%VO2 = (55/195) * 100 = 28.2%
%VN2 = (90/195) * 100 = 46%
%VHe = (50/195) * 100 = 25.64%
Hence, the percent oxygen by volume present in the blend is 28.2 %.
Explanation:
It is known that efficiency is denoted by
.
The given data is as follows.
= 0.82,
= (21 + 273) K = 294 K
= 200 kPa,
= 1000 kPa
Therefore, calculate the final temperature as follows.
0.82 =
= 1633 K
Final temperature in degree celsius =
= 
Now, we will calculate the entropy as follows.

For 1 mole, 
It is known that for
the value of
= 0.028 kJ/mol.
Therefore, putting the given values into the above formula as follows.

= 
= 0.0346 kJ/mol
or, = 34.6 J/mol (as 1 kJ = 1000 J)
Therefore, entropy change of ammonia is 34.6 J/mol.
Answer:
21.86582KJ
Explanation:
The graphical form of the Arrhenius equation is shown on the image attached. Remember that in the Arrhenius equation, we plot the rate constant against the inverse of temperature. The slope of this graph is the activation energy and its y intercept is the frequency factor.
Applying the equation if a straight line, y=mx +c, and comparing the given equation with the graphical form of the Arrhenius equation shown in the image attached, we obtain the activation energy of the reaction as shown.
Answer:
The NMR spectrum that corresponds best to p-bromoaniline is the one that is attached in the image below.
Explanation:
For the p-bromoaniline 3 types of hydrogen are observed. The first signal that appears at 3.7 ppm would be from the hydrogens of the NH2 group, the hydrogens in ortho position with respect to the NH2 group give a double at approximately 6.54 ppm, and finally the characteristic 7.21 ppm signal is observed for the hydrogens in meta position with with respect to the NH2 group.