The geometric sequence formula is expressed as an = a1 * r^(n-1) where n is an integer. In this case, upon substitution, 150.06 = 16 * r^(4). extracting r, r is equal to 1.75. Hence the 17th term from the formula is equal to 123802.32.
Answer:
Step-by-step explanation:
x, height of men is N(69, 2.8)
Sample size n =150
Hence sample std dev = 
Hence Z score = 
A) Prob that a random man from 150 can fit without bending
= P(X<78) = P(Z<3.214)=1.0000
B) n =75
Sample std dev = 
P(X bar <72) = P(Z<9.28) = 1.00
C) Prob of B is more relevent because average male passengers would be more relevant than a single person
(D) The probability from part (b) is more relevant because it shows the proportion of flights where the mean height of the male passengers will be less than the door height.
Answer: The charge was right.
Step-by-step explanation:
If he charged $18 per hour, it means he charged $18 for 60 minutes. He worked for 2 hours 15 minutes which is (60 ×2) + 15 = 135 minutes. For 135 mins, (135 ×18)÷ 60 = 40.5.
He drove 21 miles to his house and 21 miles back. That is 21×2= 42. And for $0.27 = $11.34.
Adding the costs, 40.5 + 11.34 = $51.84
<span>I note that this problem starts out with "Which is a factor of ... " This implies that you were given several answer choices. If that's the case, it's unfortunate that you haven't shared them.
I thought I'd try finding roots of this function using synthetic division. See below:
f(x) = 6x^4 – 21x^3 – 4x^2 + 24x – 35
Please use " ^ " to denote exponentiation. Thanks.
Possible zeros of this poly are factors of 35: plus or minus 1, plus or minus 5, plus or minus 7. Use synthetic division; determine whether or not there is a non-zero remainder in each case. If none of these work, form rational divisors from 35 and 6 and try them: 5/6, 7/6, 1/6, etc.
Provided that you have copied down the function
</span>f(x) = 6x^4 – 21x^3 – 4x^2 + 24x – 35 properly, this approach will eventually turn up 1 or 2 zeros of this poly. Obviously it'd be much easier if you'd check out the possible answers given you with this problem.
By graphing this function, I found that the graph crosses the x-axis at 7/2. There is another root.
Using synth. div. to check whether or not 7/2 is a root:
___________________________
7/2 / 6 -21 -4 24 -35
21 0 -14 35
----------- ------------------------------
6 0 -4 10 0
Because the remainder is zero, 7/2 (or 3.5) is a root of the polynomial. Thus, (x-3.5), or (x-7/2), is a factor.