Answer:
and not 
Step-by-step explanation:
Jim's work evaluating
is shown:

If you look at the Second step, the exponent is taken over only the numerator. It should have been taken over both the numerator and denominator as shown below.

The correct workings therefore is:

Answer:
Step-by-step explanation:
Given that:
- x represents the number of months of ownership; and
- y represents the total paid for the car after ‘x' months.
<u>First Option (Leasing)</u>
250x - y + 4000 = 0
Expressing the equation in the Slope-Intercept Form y=mx+b, we have:
y=250x+4000
<u>Second Option (Financing)</u>
$400 for 0 months of ownership, (0,400), and $4400 for 10 months of ownership, (10, 4400).
First, we determine the slope of the line joining (0,400) and (10,4400)

We have:
y=400x+b
When y=400, x=0
400=400(0)+b
b=400
Therefore, the Slope-Intercept Form of the second option is:
y=400x+400
<u>Significance</u>
- In the first option, there is a down payment of $4000 and a monthly payment of $250.
- In the second option, there is a down payment of $400 and a monthly payment of $400.
<u>Part B</u>
We notice from the graph that after 24 months, the cost for leasing and financing becomes the same ($10,000). Therefore, a consumer will be better off financing since the downpayment for leasing is higher.
<u>i.e </u>
- When x=0, y=$4000 for leasing
- When x=0, y=$400 for financing
Answer:
The correct option is;
Yes, the line should be perpendicular to one of the rectangular faces
Step-by-step explanation:
The given information are;
A triangular prism lying on a rectangular base and a line drawn along the slant height
A perpendicular bisector should therefore be perpendicular with reference to the base of the triangular prism such that the cross section will be congruent to the triangular faces
Therefore Marco is correct and the correct option is yes, the line should be perpendicular to one of the rectangular faces (the face the prism is lying on).
To solve this problem you must apply the proccedure shown below:
1. You have that the hyperbola <span>has a vertex at (0,36) and a focus at (0,39).
2. Therefore, the equation of the directrices is:
a=36
a^2=1296
c=39
y=a^2/c
3. When you susbtitute the values of a^2 and c into </span>y=a^2/c, you obtain:
<span>
</span>y=a^2/c
<span> y=1296/13
4. When you simplify:
y=432/13
Therefore, the answer is: </span><span>y = ±432/13</span>