answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Angelina_Jolie [31]
2 years ago
9

1. California sea lions can swim as fast as 40.0 km/h. Suppose a sea lion begins to chase a fish at this speed when the fish is

60.0 m away. The fish, of course, does not wait, and swims away at a speed of 16.0 km/h. How long would it take the sea lion to catch the fish?
2. A pet-store supply truck moves at 25.0 m/s north along a highway. Inside, a dog moves at 1.75 m/s at an angle of 35.0° east of north. What is the velocity of the dog relative to the road?

Please explain your work and give the formulas you used. Tysm <3!
Physics
2 answers:
Pie2 years ago
8 0

#1

In order to chase the fish the distance traveled by sea lion in time t must be equal to the distance of sea lion from the fish and distance traveled by fish in the same time.

So here we can say let say sea lion chase the fish in time "t"

then here we have

d_1 = d_2 + L

here

d1 = distance covered by sea lion in time t

d2 = distance covered by fish in the same time t

L = distance between fish and sea lion initially = 60 m

d_1 = v_1 * t

d_1 = (40*\frac{5}{18})*t = \frac{100}{9}*t

d_2 = (16*\frac{5}{18})*t = \frac{40}{9}*t

\frac{100}{9}*t = \frac{40}{9}*t + 60

\frac{100}{9}*t - \frac{40}{9}*t = 60

\frac{60}{9}*t = 60

t = 9 s

So it will take 9 s to chase the fish by sea lion

# 2

velocity of truck on road = 25 m/s along North

velocity of dog inside the truck = 1.75 m/s at 35 degree East of North

v_{dt} = 1.75 cos35\hat j + 1.75sin35 \hat i

v_{dt} = 1.43 \hat j + 1 \hat i

we can write the relative velocity as

v_d - v_t = 1.43 \hat j + 1 \hat i

v_d = v_t + (1.43 \hat j + 1 \hat i)

now plug in the velocity of truck in this

v_d = 25 \hat j + (1.43 \hat j + 1 \hat i)

v_d = 26.43 \hat j + 1 \hat i

so it is given as

v_d = \sqrt{26.43^2 + 1^2} = 26.44 m/s

direction will be given as

\theta = tan^{-1}\frac{v_x}{v_y}

\theta = tan^{-1}\frac{1}{26.43} = 2.2 degree

so with respect to ground dog velocity is 26.44 m/s towards 2.2 degree East of North

Aneli [31]2 years ago
3 0

Answer:

1) time t = 9 s

2) velocity v  = 26.4 m/s 2.17° east of north

Explanation:

1

Given

velocity of sea lion v_s = 40.0 kmph

velocity of the fish v-f = 16 kmph

Distance  between the fish and sea lion d = 60 m

Solution

Relative velocity of the sea lion with respect to the fish

v = v_s - v_f\\\\v = 40 - 16\\\\v = 24.kmph\\\\v = 24 \times \frac{1000}{60 \times 60}  m/s\\\\v = 6.67 m/s

Time

t = \frac{d}{v} \\\\t = \frac{60}{6.67} \\\\t = 9 s

2

Given

velocity of the truck v_t = 25 m/s

velocity of the dog v_d = 1.75 m/s

Angle \theta = 35.0^o

Solution

Dog moves in north east so

Component of velocity in East

v_{d,E} = v_dsin\theta\\\\v_{d,E} = 1.75 \times sin35\\\\v_{d,E} = 1.004 m/s

Component of velocity in North

v_{d,N} = v_dcos\theta\\\\v_{d,N} = 1.75 \times cos35\\\\v_{d,N} = 1.434 m/s

The velocity of Dog relative to the road = velocity of the dog relative to truck + velocity of the truck relative to the road

Y component

v_y = v_t + v_{d,N}\\\\v_y = 25 + 1.434\\\\v_y = 26.434 m/s

X component

v_x = v_{d,E}\\\\V_x = 1.004 m/s

Velocity

v = \sqrt{v_x^{2} +v_y^{2} } \\\\v = \sqrt{1.004^2 + 26.434^2} \\\\v = 26.4 m/s

Direction

\phi = tan^{-1}\frac{v_x}{v_y} \\\\\phi = tan^{-1}\frac{1.004}{26.434} \\\\\phi = 2.17^o east of north

You might be interested in
The intensity at a distance of 6.0 m from a source that is radiating equally in all directions is 6.0 × 10-10 w/m2 . what is the
satela [25.4K]
The intensity is defined as the ratio between the power emitted by the source and the area through which the power is calculated:
I= \frac{P}{A} (1)
where
P is the power
A is the area

In our problem, the intensity is I=6.0 \cdot 10^{-10} W/m^2. At a distance of r=6.0 m from the source, the area intercepted by the radiation (which propagates in all directions) is equal to the area of a sphere of radius r, so:
A=4 \pi r^2 = 4 \pi (6.0 m)^2 = 452.2 m^2

And so if we re-arrange (1) we find the power emitted by the source:
P=IA = (6.0 \cdot 10^{-10}W/m^2)(452.2 m^2)=2.7 \cdot 10^{-7} W
3 0
2 years ago
The posted speed limit on the road heading from your house to school is45 mi/h, which is about 20 m/s. If you live 8 km (8,000 m
zaharov [31]

Answer:

20.

Explanation:

not. tráfic. is. 20. minuts.

6 0
2 years ago
Read 2 more answers
Which description best matches the image below of a hand that is using the right-hand palm rule?
otez555 [7]

Answer:

When reviewing the results, the correct one is C

Explanation:

The right hand rule is widely useful in knowing the direction of force in a maganto field,

The ruler sets the thumb in the direction of the positive particle, the fingers extended in the direction of the magnetic field, and the palm in the direction of the force.

Let's apply this to our exercise.

The thumb that is the speed goes in the negative direction of the axis,

The two extended that the magnetic field look negative x,

The span points entered the dear sheet the negative the Z axis

When reviewing the results, the correct one is C

8 0
2 years ago
Imagine that a small boy and his much larger father are enjoying a winter morning, sliding along the ice on a nearby playground.
kramer
You can write an hypothesis such as this:
The weight of an object has effects on the operating frictional force, the greater the weight, the higher the operating frictional force.
The father is the one with the higher weight while the son has the lower weight. The operating frictional force is the friction that their weights exert.
8 0
2 years ago
Read 2 more answers
You catch a volleyball (mass 0.270 kg) that is moving downward at 7.50 m/s. In stopping the ball, your hands and the volleyball
sesenic [268]

Explanation:

The work done equals the change in energy.

W = ΔKE

W = 0 − ½mv²

W = -½ (0.270 kg) (-7.50 m/s)²

W = -7.59 J

Work is force times displacement.

W = Fd

-7.59 J = F (-0.150 m)

F = 50.6 N

3 0
2 years ago
Other questions:
  • If E1 = 13.0 V and E2 = 5.0 V , calculate the current I2 flowing in emf source E2.
    8·1 answer
  • Dr. Matthews has submitted a proposal to the institutional review board (IRB) of a university. At this university, she intends t
    14·1 answer
  • What is the wavelength of a 100-mhz ("fm 100") radio signal?
    14·2 answers
  • Blank can cause magma within Earth to blank resulting in the formation of blank rock
    7·1 answer
  • An automobile approaches a barrier at a speed of 20 m/s along a level road. The driver locks the brakes at a distance of 50 m fr
    11·1 answer
  • A 128.0-N carton is pulled up a frictionless baggage ramp inclined at 30.0∘above the horizontal by a rope exerting a 72.0-N pull
    5·1 answer
  • If you were to triple the size of the Earth (R = 3R⊕) and double the mass of the Earth (M = 2M⊕), how much would it change the g
    12·1 answer
  • A dolphin is able to tell in the dark that the ultrasound echoes received from two sharks come from two different objects only i
    9·1 answer
  • In an inertial frame of reference, a series of experiments is conducted. In each experiment, two or three forces are applied to
    15·1 answer
  • A stable orbit is an orbit that repeats indefinitely, without ever changing shape. After running several simulations with differ
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!