answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Angelina_Jolie [31]
2 years ago
9

1. California sea lions can swim as fast as 40.0 km/h. Suppose a sea lion begins to chase a fish at this speed when the fish is

60.0 m away. The fish, of course, does not wait, and swims away at a speed of 16.0 km/h. How long would it take the sea lion to catch the fish?
2. A pet-store supply truck moves at 25.0 m/s north along a highway. Inside, a dog moves at 1.75 m/s at an angle of 35.0° east of north. What is the velocity of the dog relative to the road?

Please explain your work and give the formulas you used. Tysm <3!
Physics
2 answers:
Pie2 years ago
8 0

#1

In order to chase the fish the distance traveled by sea lion in time t must be equal to the distance of sea lion from the fish and distance traveled by fish in the same time.

So here we can say let say sea lion chase the fish in time "t"

then here we have

d_1 = d_2 + L

here

d1 = distance covered by sea lion in time t

d2 = distance covered by fish in the same time t

L = distance between fish and sea lion initially = 60 m

d_1 = v_1 * t

d_1 = (40*\frac{5}{18})*t = \frac{100}{9}*t

d_2 = (16*\frac{5}{18})*t = \frac{40}{9}*t

\frac{100}{9}*t = \frac{40}{9}*t + 60

\frac{100}{9}*t - \frac{40}{9}*t = 60

\frac{60}{9}*t = 60

t = 9 s

So it will take 9 s to chase the fish by sea lion

# 2

velocity of truck on road = 25 m/s along North

velocity of dog inside the truck = 1.75 m/s at 35 degree East of North

v_{dt} = 1.75 cos35\hat j + 1.75sin35 \hat i

v_{dt} = 1.43 \hat j + 1 \hat i

we can write the relative velocity as

v_d - v_t = 1.43 \hat j + 1 \hat i

v_d = v_t + (1.43 \hat j + 1 \hat i)

now plug in the velocity of truck in this

v_d = 25 \hat j + (1.43 \hat j + 1 \hat i)

v_d = 26.43 \hat j + 1 \hat i

so it is given as

v_d = \sqrt{26.43^2 + 1^2} = 26.44 m/s

direction will be given as

\theta = tan^{-1}\frac{v_x}{v_y}

\theta = tan^{-1}\frac{1}{26.43} = 2.2 degree

so with respect to ground dog velocity is 26.44 m/s towards 2.2 degree East of North

Aneli [31]2 years ago
3 0

Answer:

1) time t = 9 s

2) velocity v  = 26.4 m/s 2.17° east of north

Explanation:

1

Given

velocity of sea lion v_s = 40.0 kmph

velocity of the fish v-f = 16 kmph

Distance  between the fish and sea lion d = 60 m

Solution

Relative velocity of the sea lion with respect to the fish

v = v_s - v_f\\\\v = 40 - 16\\\\v = 24.kmph\\\\v = 24 \times \frac{1000}{60 \times 60}  m/s\\\\v = 6.67 m/s

Time

t = \frac{d}{v} \\\\t = \frac{60}{6.67} \\\\t = 9 s

2

Given

velocity of the truck v_t = 25 m/s

velocity of the dog v_d = 1.75 m/s

Angle \theta = 35.0^o

Solution

Dog moves in north east so

Component of velocity in East

v_{d,E} = v_dsin\theta\\\\v_{d,E} = 1.75 \times sin35\\\\v_{d,E} = 1.004 m/s

Component of velocity in North

v_{d,N} = v_dcos\theta\\\\v_{d,N} = 1.75 \times cos35\\\\v_{d,N} = 1.434 m/s

The velocity of Dog relative to the road = velocity of the dog relative to truck + velocity of the truck relative to the road

Y component

v_y = v_t + v_{d,N}\\\\v_y = 25 + 1.434\\\\v_y = 26.434 m/s

X component

v_x = v_{d,E}\\\\V_x = 1.004 m/s

Velocity

v = \sqrt{v_x^{2} +v_y^{2} } \\\\v = \sqrt{1.004^2 + 26.434^2} \\\\v = 26.4 m/s

Direction

\phi = tan^{-1}\frac{v_x}{v_y} \\\\\phi = tan^{-1}\frac{1.004}{26.434} \\\\\phi = 2.17^o east of north

You might be interested in
Planetary orbits... are spaced more closely together as they get further from the Sun. are evenly spaced throughout the solar sy
BaLLatris [955]

Answer:

E) are almost circular, with low eccentricities.

Explanation:

Kepler's laws establish that:

All the planets revolve around the Sun in an elliptic orbit, with the Sun in one of the focus (Kepler's first law).

A planet describes equal areas in equal times (Kepler's second law).

The square of the period of a planet will be proportional to the cube of the semi-major axis of its orbit (Kepler's third law).

T^{2} = a^{3}

Where T is the period of revolution and a is the semi-major axis.

Planets orbit around the Sun in an ellipse with the Sun in one of the focus. Because of that, it is not possible to the Sun to be at the center of the orbit, as the statement on option "C" says.

However, those orbits have low eccentricities (remember that an eccentricity = 0 corresponds to a circle)

In some moments of their orbit, planets will be closer to the Sun (known as perihelion). According with Kepler's second law to complete the same area in the same time, they have to speed up at their perihelion and slow down at their aphelion (point farther from the Sun in their orbit).

Therefore, option A and B can not be true.

In the celestial sphere, the path that the Sun moves in a period of a year is called ecliptic, and planets pass very closely to that path.  

4 0
2 years ago
Three arrows are shot horizontally. They have left the bow and are traveling parallel to the ground. Air resistance is negligibl
timurjin [86]

Answer:

F₁ = F₂ = F₃ = 0 N

Explanation:

given,

Arrow 1 mass = 80 g   speed = 10 m/s

Arrow 2 mass = 80 g   speed = 9 m/s

Arrow 3 mass = 90 g   speed = 9 m/s

Horizontal Force:- F₁ , F₂ and F₃

There is no air resistance.

If Air resistance is zero then the horizontal acceleration of the arrow also equal to zero.

We know,

According to newton's second law

        F = m a

If Acceleration is equal to zero

Then Force is also equal to zero.

Hence, F₁ = F₂ = F₃ = 0 N

4 0
2 years ago
There have been several proposed atomic models during the last 150 years. Which model best illustrates the Bohr model. This mode
Eva8 [605]
<span>Despite the Quantum Mechanical Model treating the electron mathematically as a wave rather than fixed patterns, the Quantum Mechanical model best illustrates the Bohr model because both models of the atom assign specific energies to an electron.</span>
3 0
1 year ago
Read 2 more answers
Para proteger un computador de sobrecargas eléctricas, Juan coloca un filamento delgado de cobre llamado fusible en su circuito,
Lynna [10]

Answer:

Los fusibles están diseñados de tal forma que estos se "rompen" o se funden, cuando la demanda eléctrica supera un dado valor (cuando demasiada electricidad pasa a través de el).

Una vez el filamento se rompe, la corriente ya no puede circular por el (podes pensar en esta situación como un cable roto, la electricidad no puede circular por este cable)

Entonces, al romperse el filamento, en caso de una sobrecarga eléctrica, el flujo de electricidad se corta, y de esta forma se protege al computador de posibles sobrecargas.

7 0
1 year ago
An underground tunnel has two openings, with one opening a few meters higher than the other. If air moves past the higher openin
klasskru [66]

Answer:

There would be a pressure drop in the direction of the higher opening. This will force air to move in from the lower opening and force it to leave through the higher opening. This will create a convectional movement of air, cooling and ventilating the tunnel.

Explanation:

This is in accordance with bernoulli's law of fluid flow which states that the pressure exerted by a moving fluid is lesser than it would exert if it were at rest.

6 0
2 years ago
Other questions:
  • A solution is oversaturated with solute. Which could be done to decrease the oversaturation?
    13·2 answers
  • To practice Problem-Solving Strategy 23.2 for continuous charge distribution problems. A straight wire of length L has a positiv
    7·1 answer
  • Sharks are generally negatively buoyant; the upward buoyant force is less than the weight force. This is one reason sharks tend
    6·1 answer
  • Suppose we replace the mass in the video with one that is four times heavier. How far from the free end must we place the pivot
    14·1 answer
  • Which of the following best describes a set of conditions under which archaeoastronomers would conclude that an ancient structur
    13·1 answer
  • Imagine two people standing at placemark A and placemark E, looking at each other across the fault. Which of the following state
    7·1 answer
  • Particle q1 has a positive 6 µC charge. Particle q2 has a positive 2 µC charge. They are located 0.1 meters apart.
    14·2 answers
  • Caelyn wanted to find out what shampoo made her hair the shiniest . Everyday she washed her hair with different shampoos and the
    5·1 answer
  • An observer O is standing on a platform of length L = 90 m on a station. A rocket train passes at a relative (constant) speed of
    12·1 answer
  • On a straight road (taken to be in the +x direction) you drive for an hour at 50 km per hour, then quickly speed up to 90 km per
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!