1) The outcomes for rolling two dice, the sample space, is as follows:
(1, 1), (1, 2), (1, 3), (1, 4), (1, 5), (1, 6)
(2, 1), (2, 2), (2, 3), (2, 4), (2, 5), (2, 6)
(3, 1), (3, 2), (3, 3), (3, 4), (3, 5), (3, 6)
(4, 1), (4, 2), (4, 3), (4, 4), (4, 5), (4, 6)
(5, 1), (5, 2), (5, 3), (5, 4), (5, 5), (5, 6)
(6, 1), (6, 2), (6, 3), (6, 4), (6, 5), (6, 6)
There are 36 outcomes in the sample space.
2) The ways to roll an odd sum when rolling two dice are:
(1, 2), (1, 4), (1, 6), (2, 1), (2, 3), (2, 5), (3, 2), (3, 4), (3, 6), (4, 1), (4, 3), (4, 5), (5, 2), (5, 4), (5, 6), (6, 1), (6, 3), (6, 5). There are 18 outcomes in this event.
3) The probability of rolling an odd sum is 18/36 = 1/2 = 0.5
A quadratic equation has either two different real roots, one real root, or two conjugate complex roots (this is the case when the discriminant is negative, i.e. when you have no real roots).
Two conjugate complex roots have the same real part and opposite imaginary parts. So, the solutions to Amina's equation will be in this form:

For some 
Answer:
As per the given statement:
The region bounded by the given curves about the y-axis,
, y=0, x = 0 and x = 1
Using cylindrical shell method:
The volume of solid(V) is obtained by rotating about y-axis and the region under the curve y = f(x) from a to b is;
where 
where x is the radius of the cylinder
f(x) is the height of the cylinder.
From the given figure:
radius = x
height(h) =f(x) =y=
a = 0 and b = 1
So, the volume V generated by rotating the given region:
![V =2 \pi \int_{0}^{1} x ( 13e^{-x^2}) dx\\\\V=2\pi\left [ -\frac{13}{2}e^{-x^2} \right ]_{0}^{1}\\\\V=2\pi\left (-\frac{13}{2e}-\left(-\frac{13}{2}\right) \right )\\\\V=-\frac{13\pi }{e}+13\pi](https://tex.z-dn.net/?f=V%20%3D2%20%5Cpi%20%5Cint_%7B0%7D%5E%7B1%7D%20x%20%28%2013e%5E%7B-x%5E2%7D%29%20dx%5C%5C%5C%5CV%3D2%5Cpi%5Cleft%20%5B%20-%5Cfrac%7B13%7D%7B2%7De%5E%7B-x%5E2%7D%20%5Cright%20%5D_%7B0%7D%5E%7B1%7D%5C%5C%5C%5CV%3D2%5Cpi%5Cleft%20%28-%5Cfrac%7B13%7D%7B2e%7D-%5Cleft%28-%5Cfrac%7B13%7D%7B2%7D%5Cright%29%20%5Cright%20%29%5C%5C%5C%5CV%3D-%5Cfrac%7B13%5Cpi%20%7D%7Be%7D%2B13%5Cpi%20)
therefore, the volume of V generated by rotating the given region is 
Answer:
Longest possible length for each of the shorter lengths of ribbon is 9 cm because greatest common factor for both 36 and 45 is 9.
Step-by-step explanation:
Alannah has two ribbons one length is 36cm and other is 45cm.
It asked to find shorter length of ribbons that each cut into equal pieces with out no ribbon left over.
So, let's find greatest common factor for both 36 and 45.
Let's prime factor each number
36= 2*2*3*3
45= 3*3*5
So, GCF is product of common factors for both numbers.
GCF= 3*3 =9
So, longest possible length for each of the shorter lengths of ribbon is 9 cm.
Learn more about GCF in brainly.com/question/21612147.