Mendeleev produced the first orderly arrangement of known elements.
Mendeleev used patterns to predict undiscovered elements.
5,10,15,20,25,30, that's how much it should have been
Answer:
<em>B</em><em>.</em><em> </em><em>Kinetic</em><em> </em><em>friction</em><em> </em>
Explanation:
This is definitely the correct answer because kinetic friction acts when an object is in motion and it allows the object to move without slipping, etc
<em>ALSO</em><em>,</em><em> </em><em>PLEASE DO</em><em> </em><em>MARK</em><em> </em><em>ME AS</em><em> </em><em>BRAINLIEST UWU</em><em> </em>
<em>Bonne</em><em> </em><em>journée</em><em> </em><em>;</em><em>)</em><em> </em>
By definition, the kinetic energy is given by:
K = (1/2) * m * v ^ 2
where
m = mass
v = speed
We must then find the speed of both objects:
blue puck
v = root ((0) ^ 2 + (- 3) ^ 2) = 3
gold puck
v = root ((12) ^ 2 + (- 5) ^ 2) = 13
Then, the kinetic energy of the system will be:
K = (1/2) * m1 * v1 ^ 2 + (1/2) * m2 * v2 ^ 2
K = (1/2) * (4) * (3 ^ 2) + (1/2) * (6) * (13 ^ 2)
K = <span>
525</span> J
answer
The kinetic energy of the system is<span>
<span>525 </span></span>J
Answer:
2.286 ohm
Explanation:
R1 = 16 ohm
R2 = 8 ohm
R3 = 4 ohm
They all are connected in parallel combination
Let the equivalent resistance is R.
1/R = 1/R1 + 1/R2 + 1/R3
1/R = 1/16 + 1/8 + 1/4
1/R = (1 + 2 + 4) / 16
1/R = 7 / 16
R = 16/7 = 2.286 ohm