10 g of glue with 13 g of water ,
Mass ratio of the material can be calculated as:
8 g of sodium borate suspended in 11 g of water, mass ratio can be calculated as:

Usually concentrations are expressed as molarity, or moles of solute per liter solution. First, convert the mass of bromide ion to moles. The molar mass of bromine is 79.904 g/mol.
Moles of bromine = 65 mg * 1 g/1000 mg * 1 mol/79.904 g = 8.135×10⁻⁴ moles
Next, convert the mass of seawater to volume using the density.
Volume of seawater = 1 kg * 1 m³/ 1,025 kg * 1000 L/1 m³ = 0.976 L
Thus,
Molarity = 8.135×10⁻⁴ moles/0.976 L = 8.335×10⁻⁴ M
While I am not the brainliest I can certainly answer.
This was a chemical change because the chemical components were changed, a big giveaway to this was the fizzing, however the temperature rising was also another giveaway.
Answer:
n NaHCO3 = 9.6 E-3 mol
Explanation:
balanced reaction:
- 2 NaHCO3(s) + H2SO4(ac) ↔ Na2SO4(ac) + 2 CO2(g) + 2 H2O(l)
- assuming a concentration of H2SO4 6M....normally worked in the lab
⇒ n H2SO4 = 8 E-4 L * 6 mol/L = 4.8 E-3 mol H2SO4
according to balanced reaction, we have that for every mol of H2SO4 there are two mol of NaHCO3 ( sodium bicarbonate)
⇒ mol NaHCO3 = 4.8 E-3 mol H2SO4 * ( 2 mol NaHCO3 / mol H2SO4 )
⇒ ,mol NaHCO3 = 9.6 E-3 mol
So 9.6 E-3 mol NaHCO3, are the minimun moles necessary to neutralize the acid.
The volume of a balloon f a gas at 842 mm Hg and -23 celsius if it’s volume is 915 milliliters at a pressure of 1170 mm Hg And a temperature of 24 celsius is 0.22 litres
Explanation:
Data given:
Initial volume of the balloon having gas V1= 915ml OR 0.195 L
initial pressure of the gas P1= 1170 mm Hg OR 1.53 atm
initial temperature of the gas T1 = 24 celsius or 273.15 + 24 = 297.15 K
Final pressure of the gas P2 = 842 mm Hg or 1.10 atm
final temperature of the gas T2 = -23 degrees or 273.15 - 23 = 250.15 K
Final volume at final temperature and pressure V2=?
The formula used is of Gas Law:
= 
V2 = 
putting the values in the equation:
V2 = 
V2 = 0.22 litres is the volume
The volume is 0.22 litres at a pressure of 1170 mmHg and temperature of -23 degrees.