Answer:
The physical and chemical change that occurs in the aquaponics are given below.
Explanation:
The plants and animals grow in size and decrease the mass of plant due to eating by the fishes is a physical changes which occurs in aquaponics. The sunlight has a heat energy which is absorb by the plants present in aquaponics which is a type of endothermic reaction. In aquaponics, the ammonia present in water is converted into nitrates which is used by the plants as a nutrients. When the mass is converted into energy, it increases the temperature of the ecosystem and also the earth surface. For example, if a wood is burn, it change into heat energy which increases the temperature and cause the global warming on the earth surface.
<h3>
Answer:</h3>
19.3 g/cm³
<h3>
Explanation:</h3>
Density of a substance refers to the mass of the substance per unit volume.
Therefore, Density = Mass ÷ Volume
In this case, we are given;
Mass of the gold bar = 193.0 g
Dimensions of the Gold bar = 5.00 mm by 10.0 cm by 2.0 cm
We are required to get the density of the gold bar
Step 1: Volume of the gold bar
Volume is given by, Length × width × height
Volume = 0.50 cm × 10.0 cm × 2.0 cm
= 10 cm³
Step 2: Density of the gold bar
Density = Mass ÷ volume
Density of the gold bar = 193.0 g ÷ 10 cm³
= 19.3 g/cm³
Thus, the density of the gold bar is 19.3 g/cm³
Answer:
The pH of the buffer is 7.0 and this pH is not useful to pH 7.0
Explanation:
The pH of a buffer is obtained by using H-H equation:
pH = pKa + log [A⁻] / [HA]
<em>Where pH is the pH of the buffer</em>
<em>The pKa of acetic acid is 4.74.</em>
<em>[A⁻] could be taken as moles of sodium acetate (14.59g * (1mol / 82g) = 0.1779 moles</em>
<em>[HA] are the moles of acetic acid (0.060g * (1mol / 60g) = 0.001moles</em>
<em />
Replacing:
pH = 4.74 + log [0.1779mol] / [0.001mol]
<em>pH = 6.99 ≈ 7.0</em>
<em />
The pH of the buffer is 7.0
But the buffer is not useful to pH = 7.0 because a buffer works between pKa±1 (For acetic acid: 3.74 - 5.74). As pH 7.0 is out of this interval,
this pH is not useful to pH 7.0
<em />
To find average atomic mass you multiply the mass of each isotope by its percentage, and then add the values up.
35 * 0.90 + 37 * 0.08 + 38 * 0.02 = 35.22
Average atomic mass closest to 35.22 amu.
How many carbon atoms are there in a 1.3-carat diamond? Answer: 1.3 x 10^22 C atoms...
If a 1 carat = 0.20 g ... then 0.3 carat = 0.20 / 0.3 = 0.06 g
Thus, 1.3 carat = 0.26g
Find the moles first:
Moles= Grams / Mm of C
0.26 / 12.011 = 0.0216 mols of C
Atoms = Moles * Avogadro's number (6.022*10^23)
0.0216 * 6.022*10^23 = 1.3*10^22 C atoms
Hope this helps! :)