<span>One of the main tenets of kinetic molecular theory is the the molecules of gas conserve their kinetic energy perfectly when they collide with each other (or the walls of the container for that matter), thus keeping them in constant motion. Since this is the definition of then elastic collision (one in which kinetic energy is maintained), then the answer is "d. are perfectly elastic".</span>
Answer:
Upper F subscript 2 (g) plus upper C a (s) right arrow with delta above upper C a upper F subscript 2 (s).
Explanation:
This is a chemical reaction problem.
In expressing any chemical reaction, we need to understand that there are reactants and products.
- The reactants are the species on the left hand side that are combining.
- The products are the species on the right hand side that are formed.
- Every chemical reaction is obeys the law of conservation of matter i.e equal number of matter on both sides.
Using the statement of this problem, we can deduce that;
Reactants are Fluorine gas and Calcium metal
Product is Calcium Fluoride
Note: A metal is a solid(s) and powder is a solid(s). A gas is denoted as (g). They depict the state of the species reacting.
F₂
+ Ca
→ CaF₂
We can see that equal number of atoms are on both sides of the expression.
From the chemical formula of sulfuric acid, we can see the molar ratio:
H : S : O
2 : 1 : 4
Now, we convert the mass of hydrogen given into the moles of hydrogen. This is done using
Moles = mass / Mr
Moles = 7.27 / 1
Moles = 7.27
Therefore, the moles will be:
S = 7.27 / 2 = 3.64 moles
O = 7.27 * 2 = 14.54 moles
Now, the respective masses are:
S = 32 * 3.64 = 116.48 grams
O = 16 * 14.54 = 232.64 grams
Answer:
Negative sign says that release of heat.
Explanation:
The expression for the calculation of the heat released or absorbed of a process is shown below as:-
Where,
is the heat released or absorbed
m is the mass
C is the specific heat capacity
is the temperature change
Thus, given that:-
Mass = 25.2 g
Specific heat = 0.444 J/g°C
So,
Negative sign says that release of heat.
Mixing calcium carbonate and HCl.
Heating copper sulfate pentahydrate.
Mixing potassium iodide and lead nitrate.
Combining magnesium and hcl.
Burning the candle.
Let's look at the available options and see what are chemical changes and what are physical changes. As a side note, line breaks, capitalization, and punctuation are VERY important. I spent almost as much time attempting to actually figure out what your options were as I spent in distinguishing between what were chemical reactions and physical changes.
Crushing calcium carbonate.
* This is a mere physical change. You start with large pieces of calcium carbonate and end up with smaller pieces. So this is a bad choice.
Mixing calcium carbonate and HCl.
* This is a chemical reaction where the calcium carbonate and hydrochloric acid react with each other and produce carbon dioxide plus other compounds. So this is a good choice.
Boiling water.
* Another physical change from liquid to vapor. You can cool down the resulting vapor and end up with the original water. So this is a bad choice.
Heating copper sulfate pentahydrate.
* This is a chemical change in that you're converting CuSO4 . 5H2O(s) into CuSO4 and H2O. So this too is a good choice.
Separating iron filing and sulfur.
* You start out with iron filings and sulfur and end up with iron filings and sulfur. Things are a bit more orderly, but no chemical reactions have occurred. So this is a bad choice.
Mixing potassium iodide and lead nitrate. * You start with 2 white solids and upon mixing them, you get a yellow solid.
A chemical reaction has occurred. So this is a good choice.
Combining magnesium and hcl.
* When you combine these two items, you get hydrogen gas as a product. So you have a chemical reaction. And this is a good choice.
Burning the candle.
* Another chemical reaction. The wax combines with the oxygen in the air and produces water vapor and carbon dioxide. So this is a good choice.