Answer:
C.) <u>India, the European Space Agency, and Other launched a total of 4.5 percent of the successful missions.</u>
<u></u>
<u>EDGE2021</u>
To expand (3 - 2x)^6 use the binomial theorem:
(x + y)^ n = C(n,0) x^ny^0 + C(n,1)x^(n-1) y + C(n,2)x^(n-2) y^2 + ...+ C(n,n+1)xy^(n-1) + C(n,n)x^0y^n
So, for x = 3, y = -2x , and n = 6 you get:
(3 - 2x) ^6 = C(6,0)(3)^6 + C(6,1)(3)^5 (-2x) + C(6,2) (3)^4 (-2x)^3 + C(6,3) (3^3) (-2x)^4 + C(6,4)(3)^2 (-2x)^4 + C(6,5) (3) (-2x)^5 + C(6,6) (-2x)^6
So, the sixth term is C(6,5)(3)(-2x)^5 = 6! / [5! (6-5)! ] * 3 * (-2)^5 x^5 = - 6*3*32 = - 576 x^5.
The coefficient of that term is - 576.
Answer: - 576
108 divided by 9 = 12 x -12 = -144 divided by 6 = -24 - (100 divided by 5) =
-24 - 20 = -44
answer= -44
<h3>
Answer:</h3>
equations
solution
<h3>
Step-by-step explanation:</h3>
Let "a" and "c" represent the numbers of adult and children's tickets sold, respectively. The problem statement tells us two relationships between these values:
... 20a +10c = 15000 . . . . . . total revenue from ticket sales
... c = 3a . . . . . . . . . . . . . . . . relationship between numbers of tickets sold
Using the expression for c, we can substitute into the first equation to get ...
... 20a +10(3a) = 15000
... 50a = 15000
... a = 15000/50 = 300 . . . . . adult tickets sold
... c = 3·300 = 900 . . . . . children's tickets sold
Answer:
y = -1/2 x
Step-by-step explanation:
Follow the directions "Complete the steps to write the equation of direct variation. Start with the equation of direct variation y = kx. Substitute in the given values for x and y to get . Solve for k to get . Write the direct variation equation with the value found for k."
y = kx substitute y = -4 and x = 8.
-4 = k*8
-4/8 = k
-1/2 = k
So the equation is y = -1/2(x).