Answer:
Na₂CO₃ · 10H₂O
Explanation:
The formula for sodium carbonate hydrate is:
Na₂CO₃ · xH₂O
The unknown "x" is the number of water molecules contained in the hydrate.
To find "x" we have to use the hydrogen percentage in the sample, 7.05 % H.
First we calculate the molecular weight of Na₂CO₃ · xH₂O:
molecular weight of Na₂CO₃ · xH₂O = 23 × 2 + 12 + 16 × 3 + 18x
molecular weight of Na₂CO₃ · xH₂O = 106 + 18x g/mole
Now we devise the fallowing reasoning tanking in account 1 mole of Na₂CO₃ · xH₂O:
if in 106 + 18x grams of Na₂CO₃ · xH₂O we have 2x grams of hydrogen
then in 100 grams of Na₂CO₃ · xH₂O we have 7.05 grams of hydrogen
106 + 18x = (100 × 2x) / 7.05
106 + 18x = 28.4x
106 = 28.4x - 18x
106 = 10.4x
x = 106 / 10.4
x = 10.2 ≈ 10
The formula for the washing soda is Na₂CO₃ · 10H₂O.
The
number of iron atoms in a cooking pot that has a mass of 0.500 kg can be solve
by dividing it by the mass of the iron atom.
Number
of iron atoms = ( 0.5 kg) (1000g / 1kg) ( 1 iron atom / 9.27 x 10^-23 g)
<span>Number
of iron atoms = 5.39 x 10 ^24 iron atoms</span>
Answer:
Explanation:
It will be better to use solvents that are lighter than water, because their density has an influence on the miscibility . This will give you a better separation during extraction.
Answer : The expected coordination number of NaBr is, 6.
Explanation :
Cation-anion radius ratio : It is defined as the ratio of the ionic radius of the cation to the ionic radius of the anion in a cation-anion compound.
This is represented by,

When the radius ratio is greater than 0.155, then the compound will be stable.
Now we have to determine the radius ration for NaBr.
Given:
Radius of cation,
= 102 pm
Radius of cation,
= 196 pm

As per question, the radius of cation-anion ratio is between 0.414-0.732. So, the coordination number of NaBr will be, 6.
The relation between radius ratio and coordination number are shown below.
Therefore, the expected coordination number of NaBr is, 6.
<span>3.68 x 10²⁵ bromine atoms * 1mol/6.02*10²³ atoms=
= 61.13 mol of bromine atoms
1 mol PBr3 ----- 3 mol Br
x mol PBr3 -----61.13 mol Br
x= 1*61.13/3 = 20.4 mol PBr3.
</span>20.4 mol PBr3 <span>contain 3.68 x 10^25 bromine atoms.</span>