We have to write an equation that uses this info so we can find the cost to ship that package. However, the package weight is given to us in grams and we need it in ounces. So first thing we are going to do is convert that 224 g to ounces. Use the fact that 1 g = .035274 ounces to convert.
. Do the multiplication and cancel out the label of grams and we have 7.901376 ounces. Ok. We know that it costs .57 to mail the package for the first ounce. We have almost 8 ounces. So no matter what, we are paying .57. For each additional ounce we are paying .32. The number of .32's we have to spend depends upon how much the package goes over the first ounce. For the first ounce we pay .57, then for the remaining 6.901376 ounces we pay .32 per ounce. Our equation looks like this: C(x) = .32(6.901376) + .57 and we need to solve for the cost, C(x). Doing the multiplication we find that it would cost $2.78 to ship that package.
Answer:
<u>The correct answer is D. Any amount of time over an hour and a half would cost $10.</u>
Step-by-step explanation:
f (t), when t is a value between 0 and 30
The cost is US$ 0 for the first 30 minutes
f (t), when t is a value between 30 and 90
The cost is US$ 5 if the connection takes between 30 and 90 minutes
f (t), when t is a value greater than 90
The cost is US$ 10 if the connection takes more than 90 minutes
According to these costs, statements A, B and C are incorrect. The connection doesn't cost US$ 5 per hour like statement A affirms, the cost of the connection isn't US$ 5 per minute after the first 30 minutes free as statement B affirms and neither it costs US$ 10 for every 90 minutes of connection, as statement C affirms. <u>The only one that is correct is D, because any amount of time greater than 90 minutes actually costs US$ 10.</u>
Jupiter has greatest mass.
The waiter should go home. It is because it is improper with regards to food safety and pathogenic bacteria such as E.coli can contaminate the food. Though the productivity of the restaurant will decrease, food safety must come first to reduce customer complaints.
Answer:
a) Null and alternative hypotheses are:
: mu=183 days
: mu>183 days
b) If the true mean is 190 days, Type II error can be made.
Step-by-step explanation:
Let mu be the mean life of the batteries of the company when it is used in a wireless mouse
Null and alternative hypotheses are:
: mu=183 days
: mu>183 days
Type II error happens if we fail to reject the null hypothesis, when actually the alternative hypothesis is true.
That is if we conclude that mean life of the batteries of the company when it is used in a wireless mouse is at most 183 days, but actually mean life is 190 hours, we make a Type II error.