Present value = 2200
interest rates =5% for 3 years, and 4% afterwards
no. of periods = 7
Future value=2200*(1.05)^3(1.04)^(7-3)
=<span>£</span>2979.367 (please round to appropriate number of decimals)
Step 1
<u>Find the measure of angle x</u>
we know that
If ray NP bisects <MNQ
then
m<MNQ=m<PNM+m<PNQ ------> equation A
and
m<PNM=m<PNQ -------> equation B
we have that
m<MNQ=(8x+12)°
m<PNQ=78°
so
substitute in equation A
(8x+12)=78+78-------> 8x+12=156------> 8x=156-12
8x=144------> x=18°
Step 2
<u>Find the measure of angle y</u>
we have
m<PNM=(3y-9)°
m<PNM=78°
so
3y-9=78------> 3y=87------> y=29°
therefore
<u>the answer is</u>
the measure of x is 18° and the measure of y is 29°
Answer:
The correct options are;
Therefore, City A is likely to have temperatures that remain fairly constant all year round because it has a compact interquartile range compared to that of City B
City B is likely to have more extreme temperatures with colder days in the winter and hotter days in the summer because the range is greater than that of A
Step-by-step explanation:
Here we have for City A
Maximum - Minimum = 10
Interquartile range =3
City B
Maximum - Minimum = 18.5
Interquartile range =9.5
Therefore, City A is likely to have temperatures that remain fairly constant all year round because it has a compact interquartile range compared to that of City B
City B is likely to have more extreme temperatures with colder days in the winter and hotter days in the summer because the range is greater than that of A.
Answer:
Step-by-step explanation:
we know that
The formula to solve a quadratic equation of the form
is equal to
in this problem we have
equate to zero
so
substitute in the formula
therefore
StartFraction 2 Over 11 EndFraction plus-or-minus StartFraction StartRoot 15 EndRoot Over 11 EndFraction