Answer:
Explanation:
check the attachment for the propose neutral structure for each compound that is consistent with the data.
Answer:
5
Explanation:
Given that the formula is;
1/λ= R(1/nf^2 - 1/ni^2)
λ = 93.7 nm or 93.7 * 10^-9 m
R= 1.097 * 10^7 m-1
nf = ?
ni = 1
From;
ΔE = hc/λ
ΔE = 6.63 * 10^-34 * 3* 10^8/93.7 * 10^-9
ΔE = 21 * 10^-19 J
ΔE = -2.18 * 10^-18 J (1/nf^2 - 1/ni^2)
21 * 10^-19 J = -2.18 * 10^-18 J (1/nf^2 - 1/ni^2)
21 * 10^-19/-2.18 * 10^-18 = (1/nf^2 - 1/1^2)
-0.963 = (1/nf^2 - 1)
-0.963 + 1 = 1/nf^2
0.037 = 1/nf^2
nf^2 = (0.037)^-1
nf^2 = 27
nf = 5
Mass = ?
Density = 2.70 g/mL
Volume = 276 mL
Therefore:
D = m / V
2.70 = m / 276
m = 2.70 x 276
m = 745.2 g
<span>Well... first, let's recognize that the chemical formula for chlorodifluoromethane is CHClF2. Count out how many valence electrons there are. C = 4, H = 1, Cl = 7, F (X2) = 14. Total is 26. Let's put C as the central atom, and put the other elements surrounding it. Draw a pair of electrons beach each element and the central atom. Then fill the halogen elements with 3 pairs of electrons each to fill their octets. Count out how many dots you have. There should be 26, making this the correct lewis structure!
Remember, hydrogen doesn't have a full octet, only a maximum of two electrons.</span>
The solution for this problem would be:
We are looking for the grams of magnesium that would have
been used in the reaction if one gram of silver were created. The computation
would be:
1 g Ag (1 mol Mg) (24.31 g/mol) / (2mol Ag)(107.87g/mol) =
0.1127 grams of Magnesium